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 According to the U.S. Energy Information Administration, the United States consumed a 

total of 97.4 trillion BTUs (British Thermal Unit, 1 BTU = 1.055 kJ) of energy in 2016 with over 

80% of that energy consumption source being fossil fuel combustion. Before a combustion 

reaction reaches its end products, a number of intermediate products form and may react with 

other abundant atmospheric species to form aerosol particles and acid rain, both of which have 

potentially negative impacts on both human-made structures and the natural environment.  

 In an effort to counteract the consequences of fossil fuel combustion, scientists are 

interested in gaining insight into the reaction mechanisms of hydrocarbon combustion reactions 

to understand how, and which, intermediate products form. One of the many intermediate 

products formed in hydrocarbon combustion reactions is the formyl radical, HCO. Discovered in 

1934, HCO radical has since been proven to form in many hundreds of combustion reactions and 

plays key roles in both atmospheric and interstellar chemistry, namely as a donor of hydroxyl 

radicals.  

 While alkane combustion has been studied extensively in the past, alkene and alkyne 

combustion has received little attention beyond the short-chain species: ethylene, propene, 

acetylene, and propyne. Due to receiving little attention, the formation of HCO radical during 

alkyne combustion reactions is focused on in this project. This thesis provides results from both 
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experimental and theoretical studies on the reactions of triplet oxygen atoms, O(3P), with the 

hydroxyl-substituted alkynes, propargyl alcohol and 3-butyn-1-ol. 

Preliminary experimental studies of alkyne combustion revealed strong variations in 

HCO radical absorption intensity across different alkyne species. The most dramatic difference 

in HCO radical absorption intensity was observed between the combustion of propyne and 

propargyl alcohol, where propargyl alcohol gave a much stronger signal for HCO radical than 

propyne. Both compounds are three-carbon alkynes, with the only difference being the hydroxyl 

substituent of propargyl alcohol. This study attempts to explain these variations via 

computational investigation. Utilizing quantum mechanical methods, potential energy profiles 

have been mapped out to reveal the energetics of reaction pathways that result in the formation 

of HCO radical. Isoformyl radical, HOC, is also investigated computationally in this project as it 

is the higher energy isomer of HCO radical and may isomerize to the lower energy state.  

The computational portion of this study reveals a higher number of HCO/HOC radical 

formation pathways for the alcohol-substituted alkynes and focuses on the reactions of O(3P) + 

propargyl alcohol and O(3P) + 3-butyn-1-ol. The experimental portion of this study involves the 

detection of HCO radical as it forms during alkyne combustion via Cavity Ring-down Laser 

Absorption Spectroscopy (CRDLAS).  

KEYWORDS: combustion; alkyne; formyl; radical; experimental; computational 
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CHAPTER I 

INTRODUCTION 

 The combustion of hydrocarbons has been a subject of interest to scientists for a whole 

host of reasons, including both its contributions to human advancement and its potential 

environmental consequences. The industrial-scale process of burning fossil fuels such as 

petroleum, coal, and natural gas allows for large yields in energy that is put to work within 

various sectors including transportation, residential/commercial energy utilization, and the 

generation of electrical power.1 The U.S. Energy Information Administration (EIA) estimates 

that a total of 97,394 trillion BTUs (British Thermal Unit, 1 BTU = 1.055 kJ) of energy were 

consumed by the United States alone in 2016, with the current total estimated consumption of 

2017 at 97,310 trillion BTUs.2 With fossil fuel combustion making up over 80% of total energy 

consumption in the United States,2 the effects of chemical byproducts from these combustion 

reactions, therefore, come into question. Perhaps the most profound effect of combustion 

byproducts is the phenomenon of global climate change in which human activities of energy 

consumption have led to the highest levels of atmospheric CO2 in 650,000 years (404.07 ppm), 

increased global temperature of 1.7° F, increased loss of land ice (281.0 gigatonnes per year), 

and a rise in sea level of about seven inches over the past 100 years.3 

 Scientists are interested in studying the reaction mechanisms of hydrocarbon combustion 

in an effort to gain further insight into how combustion reactions work and the intermediate 

byproducts that are inevitably released into the atmosphere. Scientific research into the 

mechanisms and effects of hydrocarbon combustion spans a number of fields, including physical 

chemistry, and such mechansisms have been studied experimentally and computationally by 

physical chemists for over two decades.4-6 Through experimentation and computational methods, 
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physical chemists have detected key reaction pathways that have been proven to exist throughout 

many hundreds of saturated hydrocarbon combustion reactions. However, the combustion of the 

unsaturated analogs of these hydrocarbons remains widely uninvestigated. Investigations of the 

combustion of unsaturated hydrocarbons have mostly been focused on short-chain alkenes and 

alkynes. Short-chain alkenes that have been studied extensively include ethylene7-9 and 

propene.10-12 Investigations on the combustion of alkynes have been conducted mainly on 

acetylene13-17 and propyne.18-20 Research on the reactions of O(3P) + short-chain alkenes have 

been carried out by the Cvetanović group, in which temperature dependence was observed for 

the combustion of ethylene, propene, and 1-butene.21 In addition, the Cvetanović group 

determined that radical intermediates are produced during these combustion reactions before the 

final products, CO2 and H2O, are formed.21 The high temperature conditions of a combustion 

reaction allow for the dehydrogenation of saturated hydrocarbons to their corresponding 

unsaturated forms, as described by equations (1) and (2).22 Following the dissociation of 

molecular oxygen, equation (3), alkene and alkyne species may react with O(3P) atoms to form 

many products, as shown in equations (4) and (5), 

  

alkane + heat � alkene + 2H             (1) 

 alkene + heat � alkyne + 2H            (2) 

O2 + heat � 2O(3P)                            (3) 

alkene + O(3P) � products                 (4) 

alkyne + O(3P) � products                (5) 
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Numerous product channels exist in an alkyne + O(3P) reaction, including CO, H2, and 

various radical species. Reaction pathways of alkenes and alkynes with O(3P) have been studied 

by several research groups and a number of recurring reaction pathways have been discovered, 

including the formation of the formyl radical, HCO.23 The formyl radical, HCO, was first 

reported by Vaidya in 1934 and has since been proven to be an abundantly observed intermediate 

in many hundreds of combustion reactions.24  For example, research conducted by the Bersohn 

group delved into the HCO radical formation pathways within the O(3P) + alkene systems.25 The 

formyl radical is a highly reactive atmospheric compound that may react and result in the 

formation of hydroxyl radicals, OH, a species that reacts with other atmospheric compounds to 

form aerosol particles and acid rain.22 HCO radical plays significant roles in combustion, 

atmospheric, and interstellar chemical reactions, particularly as a donor of hydrogen atoms.26 

Experimental HCO radical detection in O(3P) + alkyne reactions remains largely uninvestigated 

due to the complications of detecting HCO radical via laser-induced fluorescence (LIF), a widely 

utilized gas-phase spectroscopic method.27 The complications of employing LIF to study HCO 

radical formation stems from an interference of the O(3P) precursor, SO2, which absorbs in the 

same region as the B  X  transition of HCO radical observed in LIF (~230 nm). Cavity ring-

down laser absorption spectroscopy (CRDLAS) allows one to observe the Ã2A"(0,9,0)  X̃ 

2A'(0,0,0) transition of HCO radical (613-617 nm) without any interference from SO2. 

 The Quandt group has conducted CRDLAS experiments to demonstrate the formation of 

HCO radical within the reactions of O(3P) with propyne, butyne, 3-butyn-2-one, 3-butyn-1-ol, 

pentyne, propargyl ether, propargyl amine, and propargyl alcohol.28 These studies revealed wide 

variations in HCO radical absorption intensity across the different O(3P) + alkyne reactions. For 

example, absorption spectra collected by the Quandt group28 for propyne and propargyl alcohol 
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are shown in Figures 1 and 2, respectively. It was observed that the reaction of O(3P) with 

propyne and butyne resulted in detectable HCO radical absorption, whereas O(3P) + pentyne 

resulted in data that was far too noisy to distinguish HCO radical formation. Propargyl alcohol 

consistently gave the strongest intensity signal for HCO radical.  

 

 
Figure 1. Buettner’s absorption spectrum of HCO (average of 10 runs) for the  
reaction of O(3P) + propyne.28 

 

 

 
Figure 2. Buettner’s absorption spectrum of HCO (average of 10 runs) for the  
reaction of O(3P) + propargyl alcohol.28 
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Previous experimental work in the Quandt research lab found a relatively large signal in 

the absorption spectrum for HCO radical formation in propargyl alcohol + O(3P).28 Formyl 

radical signals were acquired for a series of other alkynes as well, with their relative absorbance 

intensities compared in Figure 3. Absorbance values below 0.02 have been covered by a dark 

area to represent where the signal becomes indistinguishable from the noise. Prior to the studies 

conducted by the Quandt and Standard lab groups, the reaction pathway of propargyl alcohol has 

gone uninvestigated and, thus, has become a topic of interest as hydroxyl-substituted alkynes 

gave the strongest absorbance signal for HCO radical after reacting with triplet oxygen.   

 

 
Figure 3. Relative HCO absorbance intensities for a series of alkynes.28 

 
 

Through computational methods, the Quandt and Standard research groups studied the 

potential energy surfaces of O(3P) + alkyne reactions to better understand the reaction 

mechanisms behind formyl radical formation.28,29 Previous computational work in the Quandt 

and Standard groups have led to new insight into how HCO radical forms during combustion 
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reactions.28-29 Computational methods have been employed to investigate novel reaction 

pathways that may explain the strong HCO radical signal seen in the propargyl alcohol + O(3P) 

reaction. The Quandt and Standard groups utilized quantum mechanical calculations for the 

optimization of equilibrium geometries, vibrational frequencies, and potential energies at the 

B3LYP/cc-pVTZ, M06-2x/cc-pVTZ, and MP2/6-311++G(d,p) levels of theory. More accurate 

potential energy values were obtained by performing single-point energy calculations on each 

optimized structure at the CCSD(T)/cc-pVTZ//M06-2x/cc-pVTZ level of theory.  

Figure 4 illustrates the relative accuracy and computational cost of different levels of 

theory and basis set sizes. The concurrent utilization of high levels of theory with large basis set 

sizes results in highly accurate optimization results. However, computational costs increase with 

accuracy. For this reason, the CCSD(T) level of theory was not feasibly applicable for full 

optimizations of the various reagent, IM, TS, and product structures for this project. Instead, 

methods with lower computational costs were employed for optimizing geometries and 

vibrational frequencies. Once this has been accomplished, the higher level CCSD(T) was used to 

optimize only the potential energies of each structure.  
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Figure 4. Plot for level of theory vs basis set size. As accuracy increases, so 
does computational cost. 
 
 
 

Thus far, only a few pathways in the reaction of O(3P) + propargyl alcohol have been 

studied and were investigated at the MP2/6-311++G(d,p) level of theory, as seen in Figure 5. The 

pathways shown in Figure 5 exist on the triplet potential energy surface of the O(3P) + propargyl 

alcohol reaction. The relative energies of all intermediate (IM) and transition state (TS) structures 

in Figure 5 have been improved upon and are presented in this project. Optimization of potential 

energies was achieved by first collecting optimized geometries, vibrational frequencies, and 

energies at the M06-2x level of theory followed by single-point energy calculations at the 

CCSD(T)/cc-pVTZ level of theory. 
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Figure 5. Potential energy profile for the reaction of O(3P) + propargyl alcohol at the MP2/6-
311++G(d,p) level of theory.28 

 

 

 

 

As seen in Figure 6, both the triplet (black) and singlet (red) pathways were computed by 

the Quandt and Standard groups for the O(3P) + propyne reaction. While the singlet surface 

pathways do not yield HCO radical, intersystem crossing (ISC) may occur in which a triplet IM 

may cross over to the singlet surface or vice versa. ISC plays an important role in many 

atmospheric and combustion reactions as it helps explain the branching ratios and intersections 

of product channels in the reactions of O(3P) + alkanes, alkenes, and alkynes.30 ISC between the 

singlet and triplet surfaces is of interest because of the accessibility of the singlet potential 

energy surface after the initiation of the reaction on the triplet surface. 
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Figure 6. Potential energy profile for the reaction of O(3P) + propyne at the MP2/6-311++G(d,p) 
level of theory (black = triplet, red = singlet).28 

 

 

The potential energy profile (PEP) is a plot of potential energy as a function of reaction 

coordinate. As the reaction progresses, IM and TS structures reveal important information about 

the combustion reaction of interest, such as relative energy barriers that indicate which reaction 

pathways are preferred. Calculated vibrational frequencies confirm whether a structure is an IM 

(all vibrational frequencies are positive) or a TS (one vibrational frequency is imaginary).  

Buettner explored the reaction pathways for the reactions of O(3P) + propyne, butyne, 

pentyne, and propargyl alcohol at the MP2 level of theory.28 This project expands upon 

Buettner’s findings and offers possible explanations as to why propargyl alcohol gave the highest 

intensity absorption signal for HCO radical in the CRDLAS studies.  
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The first accomplishment presented in this thesis is the rebuilt PEP of O(3P) + propargyl 

alcohol at the CCSD(T)/cc-pVTZ//M06-2x/cc-pVTZ level of theory because M06-2x has been 

proven to yield optimized geometries and energies that are more consistent with CCSD(T) for 

the reaction of propyne + O(3P) than other benchmarked levels of theory.29 The HCO radical 

formation pathway found by Buettner will hereby be referred to as the “established HCO radical 

pathway.” In addition to building a new PEP starting from Buettner’s MP2/6-311++G(d,p) 

structures, novel pathways of formyl radical production have also been investigated. All novel 

pathways presented here branch off from IM structures within the established HCO radical 

formation pathway. The formation of the isoformyl radical, HOC, is also investigated and 

presented here as it isomerizes to the lower energy formyl radical, HCO. Reaction mechanisms 

of HCO and HOC radical production are investigated and presented in this thesis via Natural 

Resonance Theory (NRT) analysis, from which bond orders and spin densities are obtained. 

Finally, this project is concluded with the study of the reaction of O(3P) + 3-butyn-1-ol. Full 

equilibrium geometry, vibrational frequency, and energy optimizations have been carried out at 

the M06-2x/cc-pVTZ level of theory with single-point energy calculations collected at the 

CCSD(T)/cc-pVTZ level. Both the O(3P) + propargyl alcohol and O(3P) + 3-butyn-1-ol reactions 

have received a full NRT analysis, which is presented in chapter IV. 
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CHAPTER II 

EXPERIMENTAL METHODS 

 The experimental portion of this project was completed in the Quandt research group. 

HCO radical product formation was detected via Cavity Ringdown Laser Absorption 

Spectroscopy (CRDLAS).28 The experimental set up, as seen in Figure 7, involved flowing 

reagent gaseous species through a stainless steel cavity consisting of two 27 cm tubes connected 

to an 8 cm stainless steel cubic cell. Reagents were introduced into the cavity by flowing the 

appropriate gas/vapor through small tubes connected to the system and were evacuated with a 

vacuum pump (base pressure of ~1 torr). Each end of the cavity was sealed off from the 

atmosphere by highly reflective mirrors (Los Gatos Research, R>99.999%).  

 

 
Figure 7. Diagram of the CRDLAS experimental setup. 
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Reactions were probed using a Nd:YAG laser (Continuum Surelite II, operating at 1064 

nm) which passed through a tunable pumped dye laser (Continuum ND6000). The YAG/dye 

laser setup fired at a frequency of 2 Hz and at a power of 5-10 mJ. The dye used for the dye 

pump was rhodamine 640, providing a wavelength range of 605-630 nm with a peak wavelength 

of 613 nm. One end of the stainless steel cavity featured a photomultiplier tube (PMT) for 

detection of light decay. This detector was then connected to a digital oscilloscope (PicoScope 

2207A, Pico Technologies) which was connected to a PC with a USB adapter to record the 

ringdown data. Typical ringdown times ranged from 30-70 μs. 

CRDLAS is a modification of a technique known as Cavity Attenuated Phase Shift 

(CAPS), which was developed initially to quantify the reflectivity of mirrors. CAPS uses 

continuous wave laser light to measure the phase shift between the input and output light in the 

cavity.31 However, this technique was limited in its sensitivity due to fluctuations in the phase 

angle. CRDLAS differs from CAPS in that the modulated light entering the cavity is pulsed, as 

opposed to continuous. Instead of measuring the phase shift angle, CRDLAS relies on the time it 

takes for the light intensity to decay after a given pulse. The intensity decay observed in a 

CRDLAS experiment can be expressed as a first-order relationship between the initial intensity 

of modulated light and intensity decay as a function of time, equation (6). 

 

                                                 ���� =  ���	
 �⁄            (6) 

 

Here, I(t) is the intensity at time t, I0 is the initial intensity, and τ is the ringdown time. 

The ringdown time, τ, is defined as the amount of time it takes for the light to exponentially 

decay inside the cavity and is hastened by the presence of a chemical species that absorbs light at 
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a wavelength that is within the scan-range of the spectrometer. According to the Beer-Lambert 

Law, absorption (A) equals the concentration of analyte (c) times the molar absorptivity (ε) and 

path length (l), equation (7). 

 

     = ���                    (7) 

 

CRDLAS allows for the detection of minute product concentrations (~10 ppb) by compensating 

with a large path length. The highly reflective mirrors allow the probe light to reflect back and 

forth within the cavity, resulting in an effective path length of ~20 km.  

The generation of O(3P) atoms was achieved via photolysis of SO2 at 193 nm, shown in 

equation (8), using an Ar/F Excimer Laser (Lambda Physik Compex 110), operating at a 

frequency of 2 Hz and a power of 94-114 mJ. 

 

��� + ℎ��193 ��� → ��� ��  + �� !� �            (8) 

 

The scan range chosen for probing HCO radical was 613-617 nm. HCO radical also 

shows absorption in the UV range at 230 nm for its ground to second excited state transition (B 

 X), however, the precursor for O(3P) (SO2) absorbs strongly in the UV region and so 613-617 

nm was chosen as the region to look for HCO radical formation as the P and R bands (band 

origins at 614.4 nm and 613.8 nm, respectively) are found in that region for the formyl radical 

Ã2A"(0,9,0)  X̃ 2A'(0,0,0) transition.  

Nitrogen gas was flowed through the cavity in addition to SO2 and the alkyne of interest. 

The N2 acted as a vibrational relaxant for HCO radical as well as a barrier to protect the mirrors 
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against build-up of contaminants during an experiment. Typical pressures were about 4 torr with 

a reagent gas ratio of 1:1:2 (N2:SO2:alkyne) and were monitored using a digital barometer. The 

statistical program language, R, was utilized to process the ringdown time data (exponential 

decay time vs. wavelength) into an absorption spectrum (absorption vs. wavelength).32 

Experimental studies were conducted on propyne, butyne, pentyne, and propargyl alcohol 

(Aldrich, 99%). CRDLAS results are presented and discussed in chapter IV.  
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CHAPTER III 

COMPUTATIONAL METHODS 

 Quantum mechanical methods were employed to gain insight into the mechanisms at play 

within the alkyne + O(3P) reactions of interest. Previous work by Buettner28 revealed varying 

degrees of signal intensity for the absorption spectrum of HCO radical without plausible 

explanation for the observed intensity variation across alkyne species. Computational methods 

were utilized to search for reaction pathways to help explain the higher intensity HCO radical 

absorption observed for the reaction of O(3P) with hydroxyl-substituted alkynes (propargyl 

alcohol and 3-butyn-1-ol). Both the triplet and singlet potential energy surfaces of the O(3P) + 

propargyl alcohol and O(3P) + 3-butyn-1-ol reactions were investigated and are presented here. 

While formyl radical production is only observed on the triplet potential energy surface of these 

reactions, the singlet surface is easily accessible via ISC and is, thus, relevant to this study. 

Theoretical investigations were carried out using the Gaussian 09 software package.33 

Calculations were performed at the M06-2x/cc-pVTZ level of theory, a DFT-based functional 

that has proven to yield energy values comparable to higher levels of theory without the 

computational cost.29 Previous work in the Quandt and Standard groups have employed the 

MP2(Full) method with a 6-311++G(d,p) basis set for geometry optimizations.28,29 When MP2 

potential energy values were compared to CCSD(T) single-point energy values, it was observed 

that MP2 consistently predicted higher energy barriers due to the shorter estimation of bond 

lengths. To acquire more reliable geometries with low resource cost, the M06-2x functional was 

adopted as it yielded potential energy values that were more comparable to the values found at 

the highly reliable CCSD(T)/cc-pVTZ level. The computational methods discussed here have 

been performed for the reactions of O(3P) with propargyl alcohol and 3-butyn-1-ol.  
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Once optimized geometries, vibrational frequencies, and potential energies are obtained at the 

M06-2x/cc-pVTZ level of theory, a higher level of theory may be employed to obtain more 

accurate potential energy values. The coupled cluster method, CCSD(T)/cc-pVTZ, was utilized 

to conduct single-point energy calculations on the optimized M06-2x/cc-pVTZ structures.  

The collected vibrational frequency data was utilized to identify structures as either 

intermediates (IM) or transition states (TS). TS structures exist at the saddle point of the potential 

energy surface of a reaction and have imaginary values for the frequency that describes the 

transition, such as a hydrogen shift or a dissociation. IM structures exist at local minima on the 

potential energy surface and have all positive, real values for their vibrational frequencies. 

Intrinsic reaction coordinate (IRC) calculations were carried out on most TS structures to verify 

that a given TS connected two IM structures along the reaction coordinate. The output file for an 

IRC may show 100 or more structures that connect a TS structure to its corresponding precursor 

and product IM structures. 

Minimum energy crossing point (MECP) calculations have also been performed for the 

propargyl alcohol/3-butyn-1-ol + O(3P) reactions to reveal where intersystem crossing (ISC) 

occurs within the reaction pathway.34,35 ISC is the phenomenon by which a reaction crosses from 

the triplet surface to the singlet surface or vice versa. Typically, ISC can be thought of as a seam 

on the three dimensional potential energy surface of the reaction. The MECP calculation will 

find the lowest energy point on the ISC seam and provides the point within the reaction pathway 

and the geometric parameters for which crossing may occur. 

 

 Finally, a Natural Resonance Theory (NRT) analysis was carried out on the reactions 

discussed in this project. NRT is a method developed by Frank Weinhold of University of 

Wisconsin-Madison36-40 and provides two key pieces of information that are crucial for 
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understanding the reaction mechanisms at play: natural spin density (NSD) and natural bond 

order (NBO). NSD reveals the movement of the unpaired electrons on the triplet potential energy 

surface as the reaction progresses and confirms that the dissociated HCO/HOC molecules have a 

total NSD of 1, indicating a radical species. NBO provides bond order information throughout 

the progression of the reaction and confirms bond breakage during the dissociation steps of the 

reaction mechanism. For example, the C1-C2 bond order drops to zero in the established 

pathway when HCO radical dissociates.  
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CHAPTER IV 

RESULTS 

Experimental Detection of HCO in the Reaction of O(3P) + Propargyl Alcohol 

The raw data collected via CRDLAS indicates the amount of time it takes for the light of a 

single laser pulse to decay within the cavity and is known as the ring-down time. The Nd:YAG 

laser fires at a frequency of 2 Hz through the dye pump laser, which varies the wavelength by 

approximately 0.002 nm every pulse. The lasers must pulse ~1500 times for a given run to 

generate a single absorption spectrum for HCO radical. The statistical language program, R, is 

used to convert ring-down times to absorbance intensities, which is then plotted as a function of 

wavelength. Figure 8 shows an example of raw, ring-down data collected via CRDLAS for the 

reaction of O(3P) + propargyl alcohol. 

 

   

Figure 8. Example for 1 of 1536 data points from a single 613-617 nm scan (ring-down 
time: ~15 μs).  
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HCO radical formation was confirmed for the reaction of O(3P) + propargyl alcohol via 

CRDLAS and its absorption spectrum is shown in Figure 9. The Ã 2A"(0,9,0)  X̃ 2A' (0,0,0) 

transition of HCO radical was observed in the 613-617 nm range with R and P branch origins at 

614.06 nm and 614.74 nm, respectively. While ground state HCO radical has a bent geometry, 

the first excited state of HCO radical takes on a linear conformation, resulting in the observed P 

and R branches. The collected spectrum for HCO radical is in good agreement with Buettner’s 

studies and the literature,26 confirming the collected spectrum as a signature of HCO radical.  

 

 

Figure 9. Absorption spectrum for HCO in the reaction of O(3P) + propargyl alcohol. 
This spectrum is an average of 10 individual runs. 
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 HCO radical absorption spectra were collected for other O(3P) + alkyne reactions as well 

to illustrate the varying degrees of intensity observed across different species. During data 

collection for this project, the O(3P) + butyne and O(3P) + pentyne reactions were also probed for 

HCO radical formation and the resultant spectra are shown in Figures 10 and 11. As seen in 

Figure 11, the S/N ratio is too great to confirm the formation of HCO radical in the reaction of 

O(3P) + pentyne and further experimentation and/or computation is desirable to explain the 

buried P and R branches in the spectrum.  

 

 

Figure 10. Absorption spectrum for HCO in the reaction of O(3P) + butyne. This 
spectrum is an average of 10 individual runs. 
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Figure 11. Absorption spectrum for HCO in the reaction of O(3P) + pentyne. This 
spectrum is an average of 10 individual runs. 
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As seen in Figures 9-11, the intensity of HCO radical absorption varies greatly. These 

variations also were observed in the studies conducted by Buettner and are shown in Figures 12 

and 13.  

 

     

Figure 12. Comparison of absorption spectra for HCO in the reaction of O(3P) + propyne (left) 
and O(3P) + propargyl alcohol (right). Left spectrum is an average of 15 individual runs and the 
right spectrum is an average of 8 individual runs.28 

 

 

Figure 13. Comparison of absorption spectra for HCO in the reaction of O(3P) + butyne (left) 
and O(3P) + 3-butyn-1-ol (right). Left spectrum is an average of 10 individual spectra and the 
right spectrum is an average of 10 individual runs.28 
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Hydroxyl-substituted alkynes, when reacted with O(3P), produced the strongest 

absorption signals for HCO radical. The difference in HCO radical absorption intensity observed 

between O(3P) + propyne and O(3P) + propargyl alcohol, shown in Figure 12, is worth further 

discussion. The HCO radical spectrum for O(3P) + propyne was generated by averaging 15 

individual runs together, while the HCO radical spectrum for O(3P) + propargyl alcohol is an 

average of just 8 individual runs. Despite holding the reagent gas ratios constant between each 

experimental run, the collected spectra for O(3P) + propargyl alcohol consistently showed the 

highest absorption intensity. While it is difficult to quantify the HCO radical product in these 

reactions, there seems to be a clear, observable difference in the concentration of HCO radical 

produced between propyne and propargyl alcohol. Up to this point, no plausible explanation for 

the variations of HCO radical absorption (shown above) has been proposed.  

Computational Results for O(3P) + Propargyl Alcohol 

While the results from the computational investigation of the singlet potential energy surface 

are reported here, only the results from the triplet potential energy surface will be thoroughly 

discussed as HCO radical is only formed on the triplet surface. The numbering system for O(3P) 

+ propargyl alcohol reaction is shown in Figure 14.  
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Figure 14. Numbering scheme for the O(3P) + propargyl alcohol reaction. 

 

Geometries: O(3P) + Propargyl Alcohol 

Relevant bond lengths and angles for each IM and TS on the O(3P) + propargyl alcohol 

triplet and singlet potential energy surfaces have been tabulated and are presented in tables 1-3. 

All geometries reported here are at the M06-2x/cc-pVTZ and MP2/6-311++G(d,p) levels of 

theory. Bond lengths agreed well across all optimized M06-2x and MP2 structures on both the 

triplet and singlet potential energy surfaces, with a maximum difference of just 0.085 Å. In 

general, there is good agreement between the M06-2x and MP2 bond angles with only a few 

deviations worth noting. First, the optimized structures for IM-5T show a difference of 8.7° 

between the M06-2x and MP2 results for the C1-C2-C3 bond angle. Larger geometric deviations 

are observed on the singlet surface for a few species. TS-2S shows a 16.2° difference between 

the M06-2x and MP2 structures for the C1-C2-C3 bond angle and a 15.4° difference for the C2-

C1-O8 bond angle. In addition, TS-8S shows a 9° difference between M06-2x and MP2 for the 

C1-C2-C3 bond angle and an 18.9° difference for the C2-C1-O8 bond angle. 
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Table 1. Selected bond lengths and angles for structures on the triplet potential energy surface of 
O(3P) + propargyl alcohol, calculated at the M06-2x/cc-pVTZ and MP2/6-311++G(d,p) levels of 
theory. The difference between the two levels, Δ, is also reported. The numbering scheme is 
shown in Figure 14. 

 

 

Species Level/Basis Set
C1-H4 

(Å)

C1-C2 

(Å)

C2-C3 

(Å)

C1-O8 

(Å)

C3-O9 

(Å)

O9-H5 

(Å)

˂C1-C2-C3 

(°)

<C2-C1-O8 

(°)

<H4-C1-O8 

(°)

<C2-C3-O9 

(°)

<C3-O9-H5 

(°)
M06-2x/cc-pVTZ 1.062 1.197 1.466 - 1.412 0.960 178.000 - - 113.000 108.300

MP2/6-311++G(d,p) 1.065 1.218 1.466 - 1.422 0.961 179.700 - - 112.800 107.000

Δ 0.003 0.021 0.000 - 0.010 0.001 1.700 - - -0.200 -1.300

M06-2x/cc-pVTZ 1.064 1.218 1.464 1.972 1.408 0.965 164.100 95.600 101.200 111.300 107.600

MP2/6-311++G(d,p) 1.066 1.211 1.463 1.847 1.416 0.965 165.500 98.400 101.300 111.600 106.500

Δ 0.002 -0.007 -0.001 -0.125 0.008 0.000 1.400 2.800 0.100 0.300 -1.100

M06-2x/cc-pVTZ 1.097 1.416 1.477 1.232 1.408 0.966 129.700 120.700 120.800 112.100 107.500

MP2/6-311++G(d,p) 1.105 1.461 1.480 1.199 1.417 0.966 125.700 120.900 122.400 111.200 105.900

Δ 0.008 0.045 0.003 -0.033 0.009 0.000 -4.000 0.200 1.600 -0.900 -1.600
M06-2x/cc-pVTZ 1.098 1.422 1.433 1.230 1.357 0.962 138.700 121.400 122.000 120.000 109.600

MP2/6-311++G(d,p) 1.109 1.457 1.445 1.198 1.366 0.963 138.500 124.300 122.700 118.900 107.900

Δ 0.011 0.035 0.012 -0.032 0.009 0.001 -0.200 2.900 0.700 -1.100 -1.700
M06-2x/cc-pVTZ 1.103 1.442 1.461 1.219 1.364 0.961 121.300 123.000 120.600 114.400 109.600

MP2/6-311++G(d,p) 1.112 1.481 1.465 1.190 1.370 0.962 120.800 124.100 121.800 113.500 108.400

Δ 0.009 0.039 0.004 -0.029 0.006 0.001 -0.500 1.100 1.200 -0.900 -1.200

M06-2x/cc-pVTZ - 1.378 1.500 1.212 1.405 0.964 132.100 135.700 - 111.400 109.400

MP2/6-311++G(d,p) - 1.393 1.508 1.201 1.413 0.964 130.600 138.500 - 110.600 108.000

Δ - 0.015 0.008 -0.011 0.008 0.000 -1.500 2.800 - -0.800 -1.400
M06-2x/cc-pVTZ - 1.435 1.492 1.194 1.397 0.964 123.200 128.300 - 115.800 109.300

MP2/6-311++G(d,p) - 1.461 1.502 1.196 1.413 0.963 120.700 127.300 - 113.700 107.300

Δ - 0.026 0.010 0.002 0.016 -0.001 -2.500 -1.000 - -2.100 -2.000

M06-2x/cc-pVTZ 1.115 - 1.329 1.180 1.364 0.961 - - 125.500 122.000 109.700

MP2/6-311++G(d,p) 1.116 - 1.327 1.199 1.354 0.962 - - 125.800 121.900 108.700

Δ 0.001 - -0.002 0.019 -0.010 0.001 - - 0.300 -0.100 -1.000
M06-2x/cc-pVTZ - - 1.467 1.133 1.423 0.960 - - - 109.100 108.600

MP2/6-311++G(d,p) - - 1.477 1.148 1.431 0.961 - - - 108.700 107.000

Δ - - 0.010 0.015 0.008 0.001 - - - -0.400 -1.600
M06-2x/cc-pVTZ - 1.444 1.392 1.228 1.327 0.978 121.000 127.200 - 123.000 109.100

MP2/6-311++G(d,p) - 1.529 1.335 1.217 1.326 0.978 119.000 123.000 - 126.900 107.300

Δ - 0.085 -0.057 -0.011 -0.001 0.000 -2.000 -4.200 - 3.900 -1.800
M06-2x/cc-pVTZ - 1.518 1.491 1.173 1.360 0.960 114.100 128.000 - 113.300 110.100

MP2/6-311++G(d,p) - 1.521 1.495 1.185 1.367 0.961 114.500 128.300 - 112.800 108.700
Δ - 0.003 0.004 0.012 0.007 0.001 0.400 0.300 - -0.500 -1.400

M06-2x/cc-pVTZ - - 1.464 1.136 1.369 0.960 - - - 116.200 109.600

MP2/6-311++G(d,p) - - 1.468 1.150 1.376 0.962 - - - 114.200 108.100
Δ - - 0.004 0.014 0.007 0.002 - - - -2.000 -1.500

M06-2x/cc-pVTZ 1.085 1.373 1.500 1.307 1.362 - 123.400 122.600 115.100 99.000 -

MP2/6-311++G(d,p)
Δ

M06-2x/cc-pVTZ 1.083 1.322 1.483 1.355 1.386 - 130.000 124.800 112.300 103.400 -

MP2/6-311++G(d,p) 1.085 1.296 1.479 1.364 1.389 - 138.700 128.500 110.300 106.200 -
Δ 0.002 -0.026 -0.004 0.009 0.003 - 8.700 3.700 -2.000 2.800 -

M06-2x/cc-pVTZ 1.081 1.375 1.450 1.320 1.275 - 124.300 117.400 116.400 117.400 -

MP2/6-311++G(d,p) 1.083 1.381 1.460 1.325 1.280 - 124.200 120.000 116.100 117.400 -

Δ 0.002 0.006 0.010 0.005 0.005 - -0.100 2.600 -0.300 0.000 -
M06-2x/cc-pVTZ 1.076 1.462 1.404 1.329 1.267 - 123.500 119.700 117.000 121.000 -

MP2/6-311++G(d,p) 1.082 1.484 1.464 1.363 1.201 - 118.600 114.500 113.500 122.200 -

Δ 0.006 0.022 0.060 0.034 -0.066 - -4.900 -5.200 -3.500 1.200 -

Did not converge
-

CHCCH2OH

IM-6T

TS-9T

IM-5T

TS-8T

TS-7T

IM-4T

TS-6T

TS-5T

TS-4T

IM-3T

TS-3T

IM-2T

TS-2T

IM-1T

TS-1T
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Table 2. Continued bond lengths and angles for structures on the triplet potential energy surface 
of O(3P) + propargyl alcohol, calculated at the M06-2x/cc-pVTZ and MP2/6-311++G(d,p) levels 
of theory. The difference between the two levels, Δ, is also reported. The numbering scheme is 
shown in Figure 14. 

 

Species Level/Basis Set
C1-H4 

(Å)
C1-C2 

(Å)
C2-C3 

(Å)
C1-O8 

(Å)
C3-O9 

(Å)
O9-H5 

(Å)
˂C1-C2-C3 

(°)
<C2-C1-O8 

(°)
<H4-C1-O8 

(°)
<C2-C3-O9 

(°)
<C3-O9-H5 

(°)

M06-2x/cc-pVTZ 1.089 1.315 - 1.342 1.190 - - 128.500 111.900 - -
MP2/6-311++G(d,p) 1.092 1.307 - 1.336 1.202 - - 129.600 111.800 - -

Δ 0.003 -0.008 - -0.006 0.012 - - 1.100 -0.100 - -
M06-2x/cc-pVTZ 1.102 1.444 1.458 1.219 1.335 0.964 120.700 123.500 121.600 125.500 111.200

MP2/6-311++G(d,p) 1.111 1.462 1.459 1.206 1.342 0.964 119.900 124.800 122.200 125.400 109.200
Δ 0.009 0.018 0.001 -0.013 0.007 0.000 -0.800 1.300 0.600 -0.100 -2.000

M06-2x/cc-pVTZ 1.106 1.506 1.478 1.197 1.338 0.965 112.900 124.500 120.900 124.200 111.300
MP2/6-311++G(d,p) 1.109 1.510 1.488 1.211 1.349 0.964 113.600 125.100 120.900 122.800 109.300

Δ 0.003 0.004 0.010 0.014 0.011 -0.001 0.700 0.600 0.000 -1.400 -2.000
M06-2x/cc-pVTZ 1.100 1.441 - 1.223 1.270 0.985 - 123.300 120.300 - 113.000

MP2/6-311++G(d,p) 1.108 1.469 - 1.205 1.273 0.986 - 124.400 121.200 - 110.100
Δ 0.008 0.028 - -0.018 0.003 0.001 - 1.100 0.900 - -2.900

M06-2x/cc-pVTZ - 1.471 1.495 1.265 1.260 - 110.500 121.300 - 120.000 -
MP2/6-311++G(d,p)

Δ
M06-2x/cc-pVTZ - 1.478 1.514 1.331 1.201 - 111.800 124.000 - 123.900 -

MP2/6-311++G(d,p) - 1.489 1.517 1.340 1.214 - 112.200 123.600 - 124.100 -
Δ - 0.011 0.003 0.009 0.013 - 0.400 -0.400 - 0.200 -

M06-2x/cc-pVTZ - - 1.441 1.270 1.223 - - - - 123.300 -

MP2/6-311++G(d,p) - - 1.469 1.273 1.205 - - - - 124.400 -
Δ - - 0.028 0.003 -0.018 - - - - 1.100 -

M06-2x/cc-pVTZ - 1.341 - 1.305 1.194 - - 130.100 - - -
MP2/6-311++G(d,p) - 1.339 - 1.285 1.222 - - 129.900 - - -

Δ - -0.002 - -0.020 0.028 - - -0.200 - - -
M06-2x/cc-pVTZ - 1.497 1.533 1.261 1.335 0.965 109.200 110.900 - 121.500 111.400

MP2/6-311++G(d,p)
Δ

M06-2x/cc-pVTZ - 1.528 1.489 1.289 1.339 0.965 117.700 111.900 - 123.700 111.300
MP2/6-311++G(d,p) - 1.535 1.497 1.298 1.348 0.964 116.700 111.600 - 122.500 109.500

Δ - 0.007 0.008 0.009 0.009 -0.001 -1.000 -0.300 - -1.200 -1.800
M06-2x/cc-pVTZ - - 1.357 1.250 1.345 0.964 - - - 127.700 110.100

MP2/6-311++G(d,p) - - 1.347 1.258 1.351 0.964 - - - 127.700 108.400
Δ - - -0.010 0.008 0.006 0.000 - - - 0.000 -1.700

M06-2x/cc-pVTZ - 1.361 - 1.269 1.285 0.972 - 126.800 - - 113.300
MP2/6-311++G(d,p) - 1.348 - 1.273 1.281 0.974 - 128.900 - - 111.400

Δ - -0.013 - 0.004 -0.004 0.002 - 2.100 - - -1.900
M06-2x/cc-pVTZ 1.095 1.480 1.350 1.253 1.347 0.960 130.200 118.900 123.200 121.400 109.900

MP2/6-311++G(d,p)
Δ

M06-2x/cc-pVTZ 1.102 1.477 1.308 1.374 1.364 0.959 134.900 114.300 107.100 123.600 109.200

MP2/6-311++G(d,p) 1.100 1.480 1.291 1.388 1.368 0.959 137.000 113.800 106.800 124.500 108.000
Δ -0.002 0.003 -0.017 0.014 0.004 0.000 2.100 -0.500 -0.300 0.900 -1.200

M06-2x/cc-pVTZ 1.103 1.497 1.331 1.373 1.344 0.961 126.600 117.500 111.700 125.900 108.200
MP2/6-311++G(d,p) 1.103 1.496 1.331 1.383 1.358 0.961 131.600 116.200 111.700 123.700 106.100

Δ 0.000 -0.001 0.000 0.010 0.014 0.000 5.000 -1.300 0.000 -2.200 -2.100
M06-2x/cc-pVTZ 1.104 1.502 1.313 1.361 1.329 0.963 122.700 116.400 107.200 130.600 110.100

MP2/6-311++G(d,p) 1.103 1.504 1.298 1.373 1.328 0.963 123.800 116.000 108.000 131.700 108.500
Δ -0.001 0.002 -0.015 0.012 -0.001 0.000 1.100 -0.400 0.800 1.100 -1.600

M06-2x/cc-pVTZ 1.101 - 1.311 1.215 1.327 0.965 - - 121.400 128.600 109.900
MP2/6-311++G(d,p) 1.109 - 1.327 1.205 1.329 0.965 - - 121.900 128.100 108.300

Δ 0.008 - 0.016 -0.010 0.002 0.000 - - 0.500 -0.500 -1.600

TS-17T-b

TS-17T-a

IM-9T

TS-16T Did not converge.

Did not converge.
-

-

-

TS-20T

IM-11T

TS-19T

IM-10T

TS-18T

TS-11T

TS-15T

TS-10T

Did not converge.

TS-14T

IM-8T

TS-13T

TS-12T

IM-7T
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Table 3. Selected bond lengths and angles for structures on the singlet potential energy surface 
of O(3P) + propargyl alcohol, calculated at the M06-2x/cc-pVTZ and MP2/6-311++G(d,p) levels 
of theory. The difference between the two levels, Δ, is also reported. The numbering scheme is 
shown in Figure 14. 

 

 

 

 

 

 

 

 

Species Level/Basis Set
C1-H4 

(Å)

C1-C2 

(Å)

C2-C3 

(Å)

C1-O8 

(Å)

C3-O9 

(Å)

O9-H5 

(Å)

˂C1-C2-C3 

(°)

<C2-C1-O8 

(°)

<H4-C1-O8 

(°)

<C2-C3-O9 

(°)

<C3-O9-H5 

(°)
M06-2x/cc-pVTZ 1.062 1.197 1.466 - 1.412 0.960 178.000 - - 113.000 108.300

MP2/6-311++G(d,p) 1.065 1.218 1.466 - 1.422 0.961 179.700 - - 112.800 107.000

Δ 0.003 0.021 0.000 - 0.010 0.001 1.700 - - -0.200 -1.300

M06-2x/cc-pVTZ 1.101 1.423 1.448 1.223 1.404 0.964 117.700 115.000 123.300 120.100 108.100

MP2/6-311++G(d,p) 1.103 1.433 1.451 1.237 1.414 0.963 117.200 113.800 123.600 120.800 107.000

Δ 0.002 0.010 0.003 0.014 0.010 -0.001 -0.500 -1.200 0.300 0.700 -1.100

M06-2x/cc-pVTZ 1.098 1.422 1.433 1.230 1.357 0.962 138.700 121.400 122.000 120.000 109.600

MP2/6-311++G(d,p) 1.139 1.411 1.447 1.220 1.411 0.962 122.500 136.800 122.500 122.400 108.800

Δ 0.041 -0.011 0.014 -0.010 0.054 0.000 -16.200 15.400 0.500 2.400 -0.800

M06-2x/cc-pVTZ 1.100 1.439 1.355 1.228 1.314 0.993 119.100 123.600 118.900 124.400 106.500

MP2/6-311++G(d,p) 1.102 1.443 1.366 1.241 1.323 0.992 119.400 123.300 119.100 124.200 105.200

Δ 0.002 0.004 0.011 0.013 0.009 -0.001 0.300 -0.300 0.200 -0.200 -1.300

M06-2x/cc-pVTZ 1.141 1.398 1.428 1.205 1.394 0.963 120.800 140.000 122.500 123.700 109.700

MP2/6-311++G(d,p) 1.152 1.401 1.434 1.216 1.401 0.963 120.400 142.400 123.400 124.200 108.500

Δ 0.011 0.003 0.006 0.011 0.007 0.000 -0.400 2.400 0.900 0.500 -1.200

M06-2x/cc-pVTZ - 1.311 1.508 1.154 1.414 0.960 121.400 178.800 - 114.200 108.700

MP2/6-311++G(d,p) - 1.326 1.506 1.166 1.426 0.961 121.000 178.600 - 114.200 106.800

Δ - 0.015 -0.002 0.012 0.012 0.001 -0.400 -0.200 - 0.000 -1.900

M06-2x/cc-pVTZ - - 1.405 1.126 1.384 0.961 - - - 123.000 109.900

MP2/6-311++G(d,p) - - 1.424 1.140 1.388 0.966 - - - 119.600 105.400

Δ - - 0.019 0.014 0.004 0.005 - - - -3.400 -4.500

M06-2x/cc-pVTZ - 1.400 1.428 1.163 1.377 0.961 107.400 160.900 - 117.700 110.500

MP2/6-311++G(d,p) - 1.448 1.424 1.194 1.365 0.962 116.400 142.000 - 117.900 109.100

Δ - 0.048 -0.004 0.031 -0.012 0.001 9.000 -18.900 - 0.200 -1.400

M06-2x/cc-pVTZ 1.147 1.389 1.433 1.202 1.392 0.963 122.600 141.500 122.600 118.800 107.900

MP2/6-311++G(d,p)

Δ

M06-2x/cc-pVTZ - - 1.235 1.137 1.319 0.962 - - - 153.500 110.900

MP2/6-311++G(d,p) - - 1.257 1.155 1.324 0.963 - - - 154.700 109.500

Δ - - 0.022 0.018 0.005 0.001 - - - 1.200 -1.400

M06-2x/cc-pVTZ - 1.436 1.480 1.159 1.397 0.960 87.500 167.600 - 115.500 108.400
MP2/6-311++G(d,p) - 1.426 1.498 1.177 1.407 0.960 85.800 174.100 - 115.000 106.700

Δ - -0.010 0.018 0.018 0.010 0.000 -1.700 6.500 - -0.500 -1.700

CHCCH2OH

IM-1S

TS-2S

IM-2S

TS-3S

IM-3S

TS-6S

TS-8S

TS-19S

TS-10S

TS-11S

Did not converge.

-
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Potential Energy Profiles: O(3P) + Propargyl Alcohol 

All potential energies presented in this section are referenced relative to the reactants of the 

reaction, propargyl alcohol and O(3P). Computational work by Buettner has explored the 

potential energy profiles (PEPs) for the reactions of various alkynes and substituted alkynes with 

O(3P) at the MP2/6-311++G(d,p) level of theory.28 Dilday’s investigation of O(3P) + propyne 

demonstrated that the M06-2x functional provides relative energies closer to the CCSD(T) single 

point results than does MP2.29 Triplet surface relative energies at the MP2(Full), M06-2x, and 

CCSD(T) single point levels of theory are reported in tables 1-5, which confirms the previous 

observations that M06-2x energies agree better with CCSD(T) single-point energies than does 

MP2. For this reason, all single-point energy calculations at the CCSD(T)/cc-pVTZ level of 

theory were carried out on the M06-2x/cc-pVTZ optimized geometries. All energies reported in 

this thesis are corrected for vibrational zero-point energies unless stated otherwise. 
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Table 4. Relative energies for structures on the triplet potential energy surface, computed 
using the M06-2x, MP2, and CCSD(T)//M06-2x single point methods. Relative energy 
differences, Δ, for M06-2x and MP2 results compared to CCSD(T) single-point results are 
also shown. 

 

        

          

 

 

Species Level of Theory Rel. E (kJ/mol)

M06-2x -7.25

MP2(Full) 77.41

CCSD(T) Single Point 10.40

Δ : M06-2x - CCSD(T) -17.65

Δ : MP2(Full) - CCSD(T) 67.02

M06-2x -248.96

MP2(Full) -187.50

CCSD(T) Single Point -220.27

Δ : M06-2x - CCSD(T) -28.69

Δ : MP2(Full) - CCSD(T) 32.77

M06-2x -63.33

MP2(Full) 9.66

CCSD(T) Single Point -30.60

Δ : M06-2x - CCSD(T) -32.73

Δ : MP2(Full) - CCSD(T) 40.25

M06-2x -278.32

MP2(Full) -222.21

CCSD(T) Single Point -255.02

Δ : M06-2x - CCSD(T) -23.29

Δ : MP2(Full) - CCSD(T) 32.81

M06-2x -60.58

MP2(Full) -154.84

CCSD(T) Single Point -35.52

Δ : M06-2x - CCSD(T) -25.06

Δ : MP2(Full) - CCSD(T) -119.32

M06-2x -309.97

MP2(Full) -280.51

CCSD(T) Single Point -288.26

Δ : M06-2x - CCSD(T) -21.71

Δ : MP2(Full) - CCSD(T) 7.75

M06-2x -93.85

MP2(Full) -41.89

CCSD(T) Single Point -72.06

Δ : M06-2x - CCSD(T) -21.79

Δ : MP2(Full) - CCSD(T) 30.17

M06-2x -115.64

MP2(Full) -75.98

CCSD(T) Single Point -103.56

Δ : M06-2x - CCSD(T) -12.08

Δ : MP2(Full) - CCSD(T) 27.58

TS-1T

IM-1T

TS-2T

IM-2T

TS-3T

IM-3T

TS-4T

CHOHCH+HCO

Species Level of Theory Rel. E (kJ/mol)

M06-2x -199.48

MP2(Full) -171.58

CCSD(T) Single Point -176.31

Δ : M06-2x - CCSD(T) -23.16

Δ : MP2(Full) - CCSD(T) 4.73

M06-2x -253.38

MP2(Full) -199.40

CCSD(T) Single Point -194.95

Δ : M06-2x - CCSD(T) -58.43

Δ : MP2(Full) - CCSD(T) -4.46

M06-2x -193.64

MP2(Full) -113.19

CCSD(T) Single Point -162.97

Δ : M06-2x - CCSD(T) -30.67

Δ : MP2(Full) - CCSD(T) 49.78

M06-2x -291.03

MP2(Full) -276.16

CCSD(T) Single Point -274.36

Δ : M06-2x - CCSD(T) -16.67

Δ : MP2(Full) - CCSD(T) -1.79

M06-2x -229.52

MP2(Full) -206.37

CCSD(T) Single Point -214.25

Δ : M06-2x - CCSD(T) -15.27

Δ : MP2(Full) - CCSD(T) 7.88

M06-2x -249.12

MP2(Full) -245.39

CCSD(T) Single Point -242.59

Δ : M06-2x - CCSD(T) -6.53

Δ : MP2(Full) - CCSD(T) -2.80

M06-2x -116.43

MP2(Full) -

CCSD(T) Single Point -81.84

Δ : M06-2x - CCSD(T) -34.59

Δ : MP2(Full) - CCSD(T) -

M06-2x -121.39

MP2(Full) -40.38

CCSD(T) Single Point -93.06

Δ : M06-2x - CCSD(T) -28.33

Δ : MP2(Full) - CCSD(T) 52.68

IM-5T

TS-5T

CH2OHCH+CO

TS-6T

IM-4T

TS-7T

CHOHCH2+CO

TS-8T
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Table 5. Continued relative energies for structures on the triplet potential energy surface, 
computed using the M06-2x, MP2, and CCSD(T)//M06-2x single point methods. Relative 
energy differences, Δ, for M06-2x and MP2 results compared to CCSD(T) single-point 
results are also shown. 

 

        

 

 

 

Species Level of Theory Rel. E (kJ/mol)

M06-2x -95.27

MP2(Full) -42.51

CCSD(T) Single Point -65.78

Δ : M06-2x - CCSD(T) -29.48

Δ : MP2(Full) - CCSD(T) 23.28

M06-2x -285.86

MP2(Full) -220.53

CCSD(T) Single Point -258.92

Δ : M06-2x - CCSD(T) -26.94

Δ : MP2(Full) - CCSD(T) 38.40

M06-2x -130.12

MP2(Full) -72.86

CCSD(T) Single Point -108.93

Δ : M06-2x - CCSD(T) -21.20

Δ : MP2(Full) - CCSD(T) 36.07

M06-2x -140.74

MP2(Full) -101.43

CCSD(T) Single Point -120.69

Δ : M06-2x - CCSD(T) -20.05

Δ : MP2(Full) - CCSD(T) 19.25

M06-2x -78.51

MP2(Full) -23.55

CCSD(T) Single Point -41.61

Δ : M06-2x - CCSD(T) -36.90

Δ : MP2(Full) - CCSD(T) 18.05

M06-2x -226.40

MP2(Full) -202.24

CCSD(T) Single Point -201.51

Δ : M06-2x - CCSD(T) -24.89

Δ : MP2(Full) - CCSD(T) -0.74

M06-2x -89.46

MP2(Full) -25.74

CCSD(T) Single Point -69.48

Δ : M06-2x - CCSD(T) -19.97

Δ : MP2(Full) - CCSD(T) 43.74

M06-2x -120.66

MP2(Full) -61.60

CCSD(T) Single Point -104.83

Δ : M06-2x - CCSD(T) -15.83

Δ : MP2(Full) - CCSD(T) 43.23

TS-12T

HOC+CH2CHO

IM-7T

TS-9T

IM-6T

TS-10T

HCO+CHCHOH

TS-11T

Species Level of Theory Rel. E (kJ/mol)

M06-2x -185.31

MP2(Full) -

CCSD(T) Single Point -157.42

Δ : M06-2x - CCSD(T) -27.88

Δ : MP2(Full) - CCSD(T) -

M06-2x -241.30

MP2(Full) -215.83

CCSD(T) Single Point -215.88

Δ : M06-2x - CCSD(T) -25.42

Δ : MP2(Full) - CCSD(T) 0.05

M06-2x -89.46

MP2(Full) -25.74

CCSD(T) Single Point -69.48

Δ : M06-2x - CCSD(T) -19.97

Δ : MP2(Full) - CCSD(T) 43.74

M06-2x -120.66

MP2(Full) -61.60

CCSD(T) Single Point -227.29

Δ : M06-2x - CCSD(T) 106.62

Δ : MP2(Full) - CCSD(T) 165.69

M06-2x -141.22

MP2(Full) -83.05

CCSD(T) Single Point -114.36

Δ : M06-2x - CCSD(T) -26.87

Δ : MP2(Full) - CCSD(T) 31.31

M06-2x -163.17

MP2(Full) -123.12

CCSD(T) Single Point -146.39

Δ : M06-2x - CCSD(T) -16.79

Δ : MP2(Full) - CCSD(T) 23.27

M06-2x -27.67

MP2(Full) -

CCSD(T) Single Point -1.64

Δ : M06-2x - CCSD(T) -26.04

Δ : MP2(Full) - CCSD(T) -

M06-2x -27.50

MP2(Full) 23.29

CCSD(T) Single Point -2.18

Δ : M06-2x - CCSD(T) -25.32

Δ : MP2(Full) - CCSD(T) 25.48

IM-9T

HCO+CH2COH

TS-16T

TS-13T

IM-8T

TS-14T

HOC+CH2CHO

TS-15T
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Table 6. Continued relative energies for structures on the triplet potential energy surface, 
computed using the M06-2x, MP2, and CCSD(T)//M06-2x single point methods. Relative 
energy differences, Δ, for M06-2x and MP2 results compared to CCSD(T) single-point 
results are also shown. 

 

 

*Two different HOC dissociations are possible here.  

Species Level of Theory Rel. E (kJ/mol)

M06-2x 35.25

MP2(Full) 122.04

CCSD(T) Single Point 62.42

Δ : M06-2x - CCSD(T) -27.17

Δ : MP2(Full) - CCSD(T) 59.61

M06-2x 30.78

MP2(Full) 88.42

CCSD(T) Single Point 56.00

Δ : M06-2x - CCSD(T) -25.23

Δ : MP2(Full) - CCSD(T) 32.42

M06-2x -53.10

MP2(Full) -202.82

CCSD(T) Single Point -23.10

Δ : M06-2x - CCSD(T) -30.01

Δ : MP2(Full) - CCSD(T) -179.72

M06-2x -126.81

MP2(Full) -44.04

CCSD(T) Single Point -100.01

Δ : M06-2x - CCSD(T) -26.80

Δ : MP2(Full) - CCSD(T) 55.97

M06-2x 50.33

MP2(Full) 114.90

CCSD(T) Single Point 77.39

Δ : M06-2x - CCSD(T) -27.05

Δ : MP2(Full) - CCSD(T) 37.51

M06-2x -142.16

MP2(Full) -64.85

CCSD(T) Single Point -113.30

Δ : M06-2x - CCSD(T) -28.86

Δ : MP2(Full) - CCSD(T) 48.44

M06-2x -11.91

MP2(Full) 58.90

CCSD(T) Single Point 7.16

Δ : M06-2x - CCSD(T) -19.07

Δ : MP2(Full) - CCSD(T) 51.74

M06-2x -21.09

MP2(Full) -12.11

CCSD(T) Single Point -2.36

Δ : M06-2x - CCSD(T) -18.73

Δ : MP2(Full) - CCSD(T) -9.75

*TS-17A

*TS-17B

TS-18T

IM-10T

TS-19T

IM-11T

TS-20T

CH2O+CHCOH



www.manaraa.com

32 
 

CCSD(T) single-point energies were used to construct PEPs of higher accuracy for the triplet 

and singlet potential energy surfaces of the propargyl alcohol reaction. The PEPs representing 

the established pathways (those found by Buettner)28 for the propargyl alcohol reaction at the 

MP2/6-31++G(d,p), M06-2x/cc-pVTZ, and CCSD(T)/cc-pVTZ//M06-2x/cc-pVTZ levels of 

theory are shown in Figures 15-20. The importance of collecting CCSD(T) single-point energies 

is revealed with these PEPs. Figure 17 shows the established HCO radical formation pathway 

with energies computed at the M06-2x/cc-pVTZ level of theory. As seen in Figure 17, TS-1T 

violates the definition of a transition state as it is lower in energy than the starting material. 

Figure 15 shows the PEP for the established HCO radical pathway at the higher level of theory, 

CCSD(T), where TS-1T is 10.40 kJ/mol higher than the reactants, satisfying the definition of a 

transition state. The PEP shown in Figure 15 was generated by rerunning Buettner’s MP2/6-

311++G(d,p) structures at the M06-2x/cc-pVTZ level, followed by single-point energy 

calculations at the CCSD(T)/cc-pVTZ level of theory. Figure 16 shows the PEP of the 

established singlet surface, with single-point energies calculated at the CCSD(T)/cc-pVTZ level 

of theory. As mentioned previously, the singlet surface does not result in the formation of HCO 

radical. Structures of all intermediate, transition state, and product species are included in the 

Appendix. 
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Figure 15. Established triplet surface pathways, CCSD(T)//M06-2x/cc-pVTZ level, key IM and 
TS structures shown. 

 

 

Figure 16. Established singlet surface pathways, CCSD(T)//M06-2x/cc-pVTZ level. 
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Figure 17. Established triplet surface pathways, M06-2x/cc-pVTZ level. 

 

 

Figure 18. Established singlet surface pathways, M06-2x/cc-pVTZ level. 
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Figure 19. Established triplet surface pathways, MP2/6-311++G(d,p) level. 

 

 

Figure 20. Established singlet surface pathways, MP2/6-311++G(d,p) level. 
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Buettner found two pathways for HCO radical formation for the reaction of O(3P) with 

propargyl alcohol.28 This project expands upon Buettner’s findings with three additional reaction 

pathways that result in HCO radical formation. The primary mechanism behind these novel HCO 

radical formation pathways is a hydrogen from the hydroxyl group, O9H5, shifting to the other 

oxygen atom of the molecule, O8 (see Figure 14 for atom numbering). Another important 

mechanism at play is the isomerization of HOC to HCO, making HOC radical formation 

pathways of interest. The PEP for the isomerization of the formyl radical is shown in Figure 21. 

 

 

Figure 21. Isomerization of the formyl radical, computed at the CCSD(T)//M06-2x/cc-pVTZ 
level of theory. 
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The PEPs for the novel HCO/HOC radical formation pathways are shown in Figures 22-24. 

At the MP2/6-311++G(d,p) level of theory, a stable structure for TS-8T could not be found, so 

the CCSD(T) single-point energy was used for constructing the PEP. It can also be seen that IM-

5T is actually higher in energy than both of its adjacent transition states (TS-8T and TS-9T). 

However, M06-2x performed well and yielded PEPs that were more comparable to the CCSD(T) 

single-point energy PEPs. The novel HCO/HOC radical pathways presented here are predicted to 

be accessible due to the inherent conditions of a combustion reaction. Heats of combustion for 

alkyne compounds are an order of magnitude greater than the relative energy barriers present in 

all of the HCO/HOC radical pathways presented here. In addition to this, a lot of excess energy 

from the photolysis of SO2 (the O(3P) source) provides the energy to overcome the relative 

energy barriers. 

The first novel HCO radical formation pathway found in this study branches off from IM-1T 

in the O(3P) + propargyl alcohol established pathway. As seen in Figure 22, the pathway begins 

as H5 shifts from O9 to O8. The next step in the mechanism is a shift of H6 from C3 to C2. 

Finally, the C2-C3 bond breaks, resulting in the dissociation of the HCO fragment. It is worth 

noting that the novel HCO radical pathway that splits off from IM-1T has a lower initial relative 

energy (TS-8T, -81.84 kJ/mol) than the established HCO radical pathway (TS-2T, -30.60 

kJ/mol), making the novel pathway a more thermodynamically viable pathway for HCO radical 

formation. The relative energies reported here are CCSD(T) single-point energies. 
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Figure 22. Novel HCO Pathway (branching off from IM-1T), CCSD(T)//M06-2x/cc-pVTZ 
level. 

 

 

The second novel pathway for HCO radical production branches off from IM-2T. Figure 23 

shows two novel pathways for the O(3P) + propargyl alcohol reaction: one formaldehyde 

formation pathway and one HOC formation pathway. The first step in the HOC pathway is an H-

shift from C3 to C2. The relative energy for this transition state is -44.51 kJ/mol (TS-11T), 

which is higher in energy than the established pathway relative energy of -72.06 kJ/mol (TS-4T). 

The established pathway is predicted to be the more likely mechanism to occur once the reaction 

coordinate reaches IM-2T due to it being the more thermodynamically preferred pathway.  
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Figure 23. Novel HCO Pathway (branching off from IM-2T), CCSD(T)//M06-2x/cc-pVTZ 
level. 

 

 

The third, fourth, and fifth novel pathways for HCO/HOC radical production all branch off 

from IM-4T. Figure 24 shows the mechanisms behind the novel pathways starting from IM-4T. 

First, IM-4T may undergo a hydrogen shift from O9 to O8 with a relative energy of -157.42 

kJ/mol (TS-13T), which is higher in energy than TS-7T from the carbon monoxide formation 

channel (-219.18 kJ/mol). However, it is worth noting that the established PEP does not show 

HCO radical formation from IM-4T and so this work provides an entirely new avenue for 

formation of the formyl radical. The next structure in the reaction coordinate following TS-13T 

is IM-8T. The dissociation of HCO radical also occurs from IM-8T via TS-14T with a relative 

energy of -69.48 kJ/mol. In addition, the dissociation of HOC radical occurs at this point via TS-

15T with a lower relative energy of -114.36 kJ/mol. The final novel pathway found is an HOC 

formation pathway that is significantly higher in energy than the other HCO/HOC radical 
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pathways. IM-4T may undergo an H-shift from C2 to O8 via TS-16T with a relative energy of -

1.64 kJ/mol. The following intermediate species, IM-9T, presents two possibilities for HOC 

dissociation. Once one dissociation occurs, a subsequent dissociation is not possible due to the 

energy required to break the C=C double bond. The relative energy for an HOC dissociation 

from IM-9T is 56.00 kJ/mol (TS-17T). This mechanism is thermodynamically unfavorable 

compared to the lower relative energy barriers of other HCO/HOC radical pathways in the O(3P) 

+ propargyl alcohol reaction.  

 

 

Figure 24. Novel HCO Pathway (branching off of IM-4T), CCSD(T)//M06-2x/cc-pVTZ level. 
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Minimum Energy Crossing Point 

 Intersystem crossing occurs at the minimum energy crossing point (MECP), which was 

found using the MECP method by Harvey et al.34 at the M06-2x level of theory. Intersystem 

crossing is an important phenomenon in chemistry as it allows a system to cross from one 

multiplicity potential energy surface to another. The reaction of O(3P) + propargyl alcohol 

always begins on the triplet surface as the reaction is always initiated with a triplet oxygen atom 

attacking the triple bond of a singlet alkyne species. Similar to the O(3P) + propyne reaction, 

intersystem crossing for O(3P) + propargyl alcohol takes place near the first IM in the reaction 

pathway. HCO radical can only form on the triplet surface as shown in previous studies,18,28,29 

but the singlet potential energy surface is still relevant as it is easily accessible due to a low 

energy crossing point structure between IM-1T and IM-1S with the potential energy difference 

between IM-1T and the MECP structure just 0.005%. The MECP lies just above IM-1S in 

energy by about 13 kJ/mol, and slightly higher than IM-1T by about 37 kJ/mol. Results of the 

MECP method are shown in Figure 25 and table 7. The results reveal that the geometry of the 

crossing-point structure is intermediate between IM-1T and IM-1S, with about half of the 

geometric parameters being closer to IM-1T and the other half being closer to IM-1S. 
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Figure 25. Structures for IM-1T (top left), MECP (top right), and IM-1S (bottom), 
calculated at the M06-2x/cc-pVTZ level. 

 

Table 7. MECP results, calculated at the M06-2x/cc-pVTZ level of theory. Reported energies are 
not corrected for vibrational zero-point energies. 

 

 

Parameter Crossing Point Value IM-1T IM-1S % Diff. (triplet) % Diff. (singlet)

C1-H4 (Å) 1.099 1.097 1.101 -0.180 0.180
C1-C2 (Å) 1.424 1.416 1.423 -0.560 -0.070
C1-O8 (Å) 1.226 1.232 1.223 0.490 -0.240
C2-C3 (Å) 1.461 1.463 1.448 0.140 -0.890
C3-O9 (Å) 1.404 1.408 1.404 0.290 0.000
O9-H5 (Å) 0.965 0.966 0.964 0.100 -0.100

<O8-C1-H4 (°) 122.0 120.8 123.3 -1.0 1.1
<O8-C1-C2 (°) 118.0 120.7 115.0 2.3 -2.5
<C1-C2-C3 (°) 124.5 129.7 117.7 4.2 -5.5
<C2-C3-O9 (°) 116.7 112.1 120.1 -3.9 2.9
<C3-O9-H5 (°) 107.7 107.5 108.1 -0.2 0.4

Potential Energy (hartrees) -267.0060 -267.0200 -267.0111 0.0052 0.0019

MECP (M06-2x)
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NRT Analysis: O(3P) + Propargyl Alcohol 

Natural Resonance Theory (NRT)36-40 analyses have been carried out on each stationary point 

in the O(3P) + propargyl alcohol triplet state PEP in order to better understand how the 

movement of electron density dictates the reaction mechanisms at play. Natural spin density 

(NSD) and natural bond order (NBO) data are presented in Figures 26-37. For the sake of clarity, 

only the C and O atoms of the reaction are shown on the NSD and NBO plots, as the H atoms 

carry relatively low NSD values in the system. Natural spin densities are calculated as the 

difference between α spin state and β spin state populations on each atom. The NSD data for the 

established O(3P) + propargyl alcohol pathway is shown in Figure 26, where the HCO radical 

product is composed of C1, O8, and H4.  
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Figure 26. NSD Data for the Established HCO Pathway, calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 

Figure 26 exemplifies the importance of conducting an NSD analysis as it reveals how the 

electron population shifts and confirms the dissociation of the radical species. For example, the 

HCO/HOC radical product should have a total NSD of 1 as it is a radical species and bears a 

single unpaired electron. Figure 26 shows that C1 has a NSD of 0.62 and O8 has a NSD of 0.28 

at the end of the reaction coordinate, where formyl radical dissociation occurs. The total NSD of 

C1 and O8 is 0.90, with the remaining 0.10 NSD on H4 giving a total NSD of 1.0 for H4 C1 O8. 

The NSD also shows why HCO dissociation does not occur directly from IM-1T: the spin 

distribution would not allow for the production of a radical at that point in the reaction pathway. 
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The NBO analysis, shown in Figure 27, also reveals important information as the bond orders of 

the system change drastically as the reaction progresses. Figure 27 shows that the C1-C2 bond 

order starts at 1.5 at the beginning of the established HCO radical pathway and ends at 0 as it is 

the C1-C2 bond that breaks during HCO dissociation. Similar NSD and NBO patterns are 

observed across all novel HCO/HOC radical pathways presented here. 

 

 

Figure 27. NBO Data for the Established HCO Pathway, calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 

 

 Figure 28 reveals a different shift in spin density in the O(3P) + propargyl alcohol system. 

For the first novel pathway (from IM-1T), NSD will build up on different atoms in the system 
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which ultimately leads to HCO dissociation. For this pathway, C3 and O9 make up the HCO 

radical and have a total NSD of 0.87, with the remaining 0.13 NSD on H7. This novel pathway 

involves breaking of the C2-C3 bond, a novel mechanism for the O(3P) + propargyl alcohol 

reaction shown in Figure 29. At the beginning of this pathway, IM-1T exhibits a bond order of 1 

between C2 and C3 that ultimately falls to 0 in the dissociation step of the pathway. 

 

 

Figure 28. NSD Data for a novel HCO Pathway (IM-1T), calculated at the M06-2x/cc-pVTZ 
level of theory. 
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Figure 29. NBO Data for a novel HCO Pathway (IM-1T), calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 Different patterns in NSD are observed between HCO and HOC radical formation 

pathways. Generally, NSD is split across the C and O atoms of HCO radical in an approximately 

1:3 (C:O) ratio. However, HOC formation pathways indicate something very different at play. 

The NSD distribution shows the unpaired electron is almost entirely located on the C atom in all 

HOC formation pathways as illustrated in Figure 30.  
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Figure 30. NSD Data for a novel HOC Pathway (IM-2T), calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 

NBO data for the novel HOC pathway branching from IM-2T is shown in Figure 31. 

Again, the breaking of the C2-C3 bond is the key mechanism behind HOC dissociation in this 

pathway. NBO analysis for these novel pathways reveal that HCO/HOC dissociation may occur 

from either side of the molecule, as the HCO/HOC radical product may contain either the 

incoming O(3P) atom from the first step in the pathway or the O atom from the hydroxyl 

substituent of propargyl alcohol.  
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Figure 31. NBO Data for a novel HOC Pathway (IM-2T), calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

For completion, the NSD and NBO plots for the three novel HCO/HOC radical pathways 

that branch off of IM-4T are shown in Figures 32-37. In summary, the NSD plots reveal similar 

patterns as to what has been presented in Figures 26-31 so far. HOC dissociations involve almost 

all of the NSD aggregating around the C atom of the HOC, whereas the HCO dissociation 

reveals a 1:3 ratio (O:C) for NSD. Again, the NBO analysis confirms bond breakage for the 

dissociation steps in the reaction pathway. 



www.manaraa.com

50 
 

 

Figure 32. NSD Data for a novel HOC Pathway (IM-4T), calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 

Figure 33. NBO Data for a novel HOC Pathway (IM-4T), calculated at the M06-2x/cc-pVTZ 
level of theory. 
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Figure 34. NSD Data for a novel HOC Pathway (IM-4T), calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 

Figure 35. NBO Data for a novel HOC Pathway (IM-4T), calculated at the M06-2x/cc-pVTZ 
level of theory. 
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Figure 36. NSD Data for a novel HCO Pathway (IM-4T), calculated at the M06-2x/cc-pVTZ 
level of theory. 

 

 

Figure 37. NBO Data for a novel HCO Pathway (IM-4T), calculated at the M06-2x/cc-pVTZ 
level of theory. 
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Computational Results for O(3P) + 3-Butyn-1-ol 

 

The other alkyne combustion reaction that has been investigated and presented here is the 

reaction of O(3P) + 3-butyn-1-ol. The numbering system for O(3P) + 3-butyn-1-ol is shown in 

Figure 38.  

 

Figure 38. Numbering scheme for the O(3P) + 3-butyn-1-ol reaction. 

 

Geometries: O(3P) + 3-Butyn-1-ol 

Relevant bond lengths and angles for each IM and TS on the O(3P) + 3-butyn-1-ol triplet and 

singlet potential energy surfaces have been tabulated and are presented in tables 8 and 9. All 

geometries reported here are at the M06-2x/cc-pVTZ and MP2/6-311++G(d,p) levels of theory. 

As with the propargyl alcohol reaction discussed earlier, there is good agreement between the 

M06-2x and MP2 geometries with only a few deviations worth noting. First, the optimized 

structures for TS-3T show a difference of 20.4° between the M06-2x and MP2 results for the C2-

C3-C4 bond angle. TS-7T shows a 10.6° difference between the M06-2x and MP2 results for the 

C1-C2-C3 bond angle. Again, the bond lengths for all structures across M06-2x and MP2 were 

in good agreement with minor differences on the order of 0.01 angstroms. 
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Table 8. Selected bond lengths and angles for structures on the triplet potential energy 
surface of O(3P) + 3-butyn-1-ol, calculated at the M06-2x/cc-pVTZ and MP2/6-311++G(d,p) 
levels of theory. The difference between the two levels, Δ, is also reported. The numbering 
scheme is shown in Figure 38. 

 

 

 

Species Level/Basis Set
C1-C2 

(Å)

C2-C3 

(Å)

C3-C4 

(Å)

C1-O11 

(Å)

C4-O12 

(Å)

<C1-C2-C3 

(°)

<C2-C3-C4 

(°)

<O11-C1-C2 

(°)

<C3-C4-O12 

(°)

M06-2x/cc-pVTZ 1.198 1.461 1.531 - 1.407 176.300 110.500 - 111.900

MP2/6-311++G(d,p) 1.220 1.463 1.532 - 1.416 176.000 110.700 - 111.900

Δ 0.022 0.002 0.001 - 0.009 0.300 0.200 - 0.000

M06-2x/cc-pVTZ 1.217 1.453 1.541 2.008 1.398 170.800 110.900 99.900 112.100

MP2/6-311++G(d,p) 1.213 1.454 1.541 1.860 1.405 170.200 112.200 101.600 112.200

Δ 0.004 0.001 0.000 0.148 0.007 0.600 1.300 1.700 0.100

M06-2x/cc-pVTZ 1.413 1.462 1.542 1.234 1.398 137.700 114.100 123.500 112.300

MP2/6-311++G(d,p) 1.452 1.474 1.543 1.205 1.405 134.800 114.600 124.000 112.800

Δ 0.039 0.012 0.001 0.029 0.007 2.900 0.500 0.500 0.500

M06-2x/cc-pVTZ 1.423 1.430 1.516 1.235 1.403 134.900 119.700 121.700 111.100

MP2/6-311++G(d,p) 1.450 1.441 1.518 1.216 1.411 132.500 119.800 123.000 111.500

Δ 0.027 0.011 0.002 0.019 0.008 2.400 0.100 1.300 0.400

M06-2x/cc-pVTZ 1.435 1.454 1.501 1.227 1.415 121.400 120.800 122.900 110.600

MP2/6-311++G(d,p) 1.470 1.459 1.505 1.201 1.422 120.300 120.200 123.700 110.700

Δ 0.035 0.005 0.004 0.026 0.007 1.100 0.600 0.800 0.100

M06-2x/cc-pVTZ 1.447 1.448 1.485 1.227 1.407 123.300 112.200 124.800 112.200

MP2/6-311++G(d,p) 1.456 1.456 1.493 1.226 1.413 122.100 132.600 125.100 112.600

Δ 0.009 0.008 0.008 0.001 0.006 1.200 20.400 0.300 0.400

M06-2x/cc-pVTZ 1.517 1.467 1.474 1.200 1.418 114.600 130.800 124.800 111.400

MP2/6-311++G(d,p) 1.515 1.482 1.484 1.215 1.425 116.400 133.900 125.400 112.900

Δ 0.002 0.015 0.010 0.015 0.007 1.800 3.100 0.600 1.500

M06-2x/cc-pVTZ 2.184 1.332 1.481 1.185 1.412 90.600 133.100 116.300 111.500

MP2/6-311++G(d,p) 2.130 1.329 1.486 1.200 1.419 90.800 133.700 116.900 111.800

Δ 0.054 0.003 0.005 0.015 0.007 0.200 0.600 0.600 0.300

M06-2x/cc-pVTZ - 1.307 1.480 1.173 1.415 - 136.600 - 112.200

MP2/6-311++G(d,p) - 1.292 1.482 1.186 1.421 - 138.700 - 112.800

Δ - 0.015 0.002 0.013 0.006 - 2.100 - 0.600

M06-2x/cc-pVTZ 2.148 1.302 1.515 1.191 1.408 117.600 124.800 109.800 111.200

MP2/6-311++G(d,p) 2.029 1.284 1.516 1.194 1.415 117.500 126.200 115.200 111.300

Δ 0.119 0.018 0.001 0.003 0.007 0.100 1.400 5.400 0.100

M06-2x/cc-pVTZ - 1.303 1.509 1.171 1.409 - 124.800 - 111.800

MP2/6-311++G(d,p) - 1.284 1.516 1.194 1.415 - 126.200 - 111.300

Δ - 0.019 0.007 0.023 0.006 - 1.400 - 0.500

M06-2x/cc-pVTZ 1.379 1.482 1.540 1.217 1.401 135.300 111.500 135.800 111.800

MP2/6-311++G(d,p) 1.393 1.487 1.543 1.214 1.406 134.100 111.500 137.400 112.200

Δ 0.014 0.005 0.003 0.003 0.005 1.200 0.000 1.600 0.400

M06-2x/cc-pVTZ 1.436 1.491 1.523 1.194 1.408 126.600 116.900 130.300 112.200

MP2/6-311++G(d,p) 1.456 1.497 1.526 1.198 1.416 126.600 117.300 130.100 112.500

Δ 0.020 0.006 0.003 0.004 0.008 0.000 0.400 0.200 0.300

M06-2x/cc-pVTZ 2.227 1.472 1.529 1.135 1.409 124.700 114.300 114.700 112.500

MP2/6-311++G(d,p) 2.143 1.481 1.534 1.149 1.418 114.100 113.200 113.400 112.300

Δ 0.084 0.009 0.005 0.014 0.009 10.600 1.100 1.300 0.200

M06-2x/cc-pVTZ - 1.468 1.530 1.123 1.409 - 111.600 - 112.200

MP2/6-311++G(d,p) - 1.480 1.530 1.140 1.418 - 112.600 - 112.300

Δ - 0.012 0.000 0.017 0.009 - 1.000 - 0.100

M06-2x/cc-pVTZ 1.438 1.481 1.499 1.196 1.413 123.900 121.700 130.300 112.000

MP2/6-311++G(d,p) 1.449 1.484 1.501 1.205 1.423 124.000 122.100 129.900 112.200

Δ 0.011 0.003 0.002 0.009 0.010 0.100 0.400 0.400 0.200

TS-8T

3-Butyn-1-ol

TS-1T

IM-1T

TS-2T

IM-2T

TS-3T

TS-6T

IM-4T

TS-7T

CO + 

CHCH2CH2OH

IM-3T

TS-4T

HCO + 

CH2CCH2OH

TS-5T

HCO + 

CHCHCH2OH
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Table 9. Continued selected bond lengths and angles for structures on the triplet potential 
energy surface of O(3P) + 3-butyn-1-ol, calculated at the M06-2x/cc-pVTZ and MP2/6-
311++G(d,p) levels of theory. The difference between the two levels, Δ, is also reported. The 
numbering scheme is shown in Figure 38. 

 

 

 

Species Level/Basis Set
C1-C2 

(Å)

C2-C3 

(Å)

C3-C4 

(Å)

C1-O11 

(Å)

C4-O12 

(Å)

<C1-C2-C3 

(°)

<C2-C3-C4 

(°)

<O11-C1-C2 

(°)

<C3-C4-O12 

(°)

M06-2x/cc-pVTZ 1.512 1.497 1.490 1.177 1.421 114.400 122.200 127.900 112.400

MP2/6-311++G(d,p) 1.516 1.501 1.495 1.189 1.429 114.500 121.800 127.900 112.800

Δ 0.004 0.004 0.005 0.012 0.008 0.100 0.400 0.000 0.400

M06-2x/cc-pVTZ 2.142 1.458 1.492 1.137 1.412 109.200 123.400 113.500 112.400

MP2/6-311++G(d,p) 2.100 1.469 1.496 1.152 1.422 110.600 123.300 114.700 112.200

Δ 0.042 0.011 0.004 0.015 0.010 1.400 0.100 1.200 0.200

M06-2x/cc-pVTZ - 1.451 1.493 1.122 1.413 - 121.800 - 112.800

MP2/6-311++G(d,p) - 1.460 1.498 1.139 1.422 - 121.500 - 112.700

Δ - 0.009 0.005 0.017 0.009 - 0.300 - 0.100

M06-2x/cc-pVTZ 1.522 1.501 1.477 1.175 1.368 112.300 119.400 126.300 120.200

MP2/6-311++G(d,p) 1.524 1.504 1.482 1.187 1.376 113.300 119.100 126.800 119.800

Δ 0.002 0.003 0.005 0.012 0.008 1.000 0.300 0.500 0.400

M06-2x/cc-pVTZ 1.511 1.536 1.494 1.178 1.356 114.400 114.900 128.800 120.600

MP2/6-311++G(d,p) 1.514 1.538 1.501 1.191 1.364 115.000 115.100 128.800 120.200

Δ 0.003 0.002 0.007 0.013 0.008 0.600 0.200 0.000 0.400

M06-2x/cc-pVTZ 2.173 1.503 1.490 1.141 1.360 107.500 115.100 112.700 120.700

MP2/6-311++G(d,p) 2.128 1.508 1.497 1.155 1.367 109.900 115.500 114.600 120.400

Δ 0.045 0.005 0.007 0.014 0.007 2.400 0.400 1.900 0.300

M06-2x/cc-pVTZ

MP2/6-311++G(d,p) - 1.496 1.499 1.140 1.370 - 112.900 - 118.000

Δ

M06-2x/cc-pVTZ 1.431 1.449 1.496 1.226 1.364 121.000 118.500 123.100 120.900

MP2/6-311++G(d,p) 1.470 1.451 1.499 1.197 1.373 119.400 118.200 124.100 120.100

Δ 0.039 0.002 0.003 0.029 0.009 1.600 0.300 1.000 0.800

M06-2x/cc-pVTZ 1.425 1.491 1.507 1.231 1.350 121.900 114.400 123.100 119.100

MP2/6-311++G(d,p) 1.456 1.493 1.514 1.207 1.355 121.000 114.700 123.800 119.000

Δ 0.031 0.002 0.007 0.024 0.005 0.900 0.300 0.700 0.100

M06-2x/cc-pVTZ 1.513 1.490 1.460 1.203 1.362 113.800 120.900 124.800 119.300

MP2/6-311++G(d,p) 1.516 1.495 1.468 1.217 1.370 113.800 121.000 124.900 118.500

Δ 0.003 0.005 0.008 0.014 0.008 0.000 0.100 0.100 0.800

M06-2x/cc-pVTZ 2.238 1.354 1.470 1.175 1.365 104.100 122.300 119.300 118.500

MP2/6-311++G(d,p)

Δ

M06-2x/cc-pVTZ - 1.375 1.382 1.171 1.343 - 126.300 - 125.400

MP2/6-311++G(d,p) - 1.381 1.377 1.184 1.348 - 126.400 - 126.000

Δ - 0.006 0.005 0.013 0.005 - 0.100 - 0.600

M06-2x/cc-pVTZ 1.552 1.476 1.486 1.274 1.396 119.500 120.300 116.300 111.700

MP2/6-311++G(d,p)

Δ

M06-2x/cc-pVTZ 1.560 1.478 1.483 1.289 1.384 119.100 122.300 113.100 114.800

MP2/6-311++G(d,p)

Δ

M06-2x/cc-pVTZ 1.512 1.503 1.436 1.202 1.342 111.200 119.600 124.400 132.600

MP2/6-311++G(d,p) 1.517 1.506 1.441 1.217 1.352 111.200 120.300 124.400 132.400

Δ 0.005 0.003 0.005 0.015 0.010 0.000 0.700 0.000 0.200

M06-2x/cc-pVTZ 1.499 1.532 1.487 1.205 1.330 114.600 113.600 125.200 126.000

MP2/6-311++G(d,p) 1.504 1.534 1.496 1.219 1.339 114.900 114.000 125.200 125.400

Δ 0.005 0.002 0.009 0.014 0.009 0.300 0.400 0.000 0.600

TS-16T

HCO + 

CH2CHCHOH

TS-15T

TS-14T

IM-8T

IM-5T

TS-9T

CO + 

CH2CHCH2OH

TS-10T

IM-6T

MP2 did not converge.

MP2 did not converge.

IM-10T

M06-2x did not converge.

M06-2x did not converge.

MP2 did not converge.

TS-11T

CO + 

CH2CH2CHOH

TS-12T

IM-7T

IM-9T
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Potential Energy Profiles: O(3P) + 3-Butyn-1-ol 

All potential energies presented in this section are referenced relative to the reactants of the 

reaction, 3-butyn-1-ol and O(3P). This reaction has not been investigated computationally prior 

to this project.  All of the PEPs presented here are determined at the M06-2x/cc-pVTZ and 

CCSD(T)/cc-pVTZ//M06-2x/cc-pVTZ levels of theory because, as discussed earlier, the MP2/6-

311++G(d,p) level of theory gave potential energies that were consistently further off from the 

higher level CCSD(T) results than were the M06-2x results. Again, all single-point energies 

presented here were calculated at the CCSD(T)/cc-pVTZ level of theory which were carried out 

on the M06-2x/cc-pVTZ optimized geometries. Figure 39 shows the PEP for two HCO radical 

formation pathways at the M06-2x/cc-pVTZ level of theory which, again, demonstrates the 

importance of collecting single-point energies via CCSD(T) as TS-1T violates the definition of a 

transition state by being lower in energy than IM-0 at the M06-2x/cc-pVTZ level. 
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Figure 39. Two HCO formation pathways for O(3P) + 3-butyn-1-ol, M06-2x/cc-pVTZ level. 

 

 

Figure 40. Two HCO formation pathways for O(3P) + 3-butyn-1-ol, CCSD(T)//M06-2x/cc-
pVTZ level. 
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 As seen in Figure 40, the lowest energy pathway for HCO dissociation involves two H-

shifts taking place. After the formation of the adduct (IM-1T), a hydrogen shift takes place from 

C3 to C2, forming IM-2T. From IM-2T, HCO dissociation occurs via TS-5T at a relative energy 

of -73.19 kJ/mol. However, IM-2T may undergo a second hydrogen shift from C3 to C2 via TS-

3T which then results in HCO dissociation at a relative energy of -106.63 kJ/mol. Figure 41 

shows another PEP for two additional pathways: one HCO radical pathway and one HOC radical 

pathway. It is worth noting that TS-13T did not converge at the M06-2x/cc-pVTZ level of 

theory, and so the MP2/6-311++G(d,p) structure and relative energy were used to construct this 

PEP. 

 

 

Figure 41. Additional HCO/HOC formation pathways for O(3P) + 3-butyn-1-ol, M06-2x/cc-
pVTZ level. 

 



www.manaraa.com

59 
 

Figure 42 shows the CCSD(T)//M06-2x/cc-pVTZ energies of the HCO and HOC radical 

production pathways shown in Figure 41. Figure 42 reveals the two lowest energy pathways that 

result in HCO radical formation, based upon the isomerization of HOC as discussed earlier. Both 

pathways split off from IM-2T (Figure 40). Similar mechanisms are observed for the O(3P) + 3-

butyn-1-ol reaction as were obtained for the O(3P) + propargyl alcohol reaction, namely the role 

of the hydroxyl substituent engaging in the reaction mechanism. As seen in Figure 41, the 

hydroxyl group on C4 eventually forms the HOC product via TS-17T. The final pathway 

presented here is another HOC dissociation pathway and is shown in Figures 43 and 44. 

 

 

Figure 42. Additional HCO/HOC formation pathways for O(3P) + 3-butyn-1-ol, 
CCSD(T)//M06-2x/cc-pVTZ level. 
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Figure 43. Final HOC dissociation pathway found for O(3P) + 3-butyn-1-ol, M06-2x/cc-pVTZ    
level. 
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Figure 44 reveals that the hydroxyl group plays an important role in the formation of 

HOC. Similar to a couple of the novel pathways for the propargyl alcohol reaction, a hydrogen 

atom shifts from O12 to O11 via TS-15T, which is followed by the dissociation of HOC via TS-

18T.  

 

 

Figure 44. Final HOC dissociation pathway found for O(3P) + 3-butyn-1-ol, CCSD(T)//M06-
2x/cc-pVTZ. 
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NRT Analysis: O(3P) + 3-Butyn-1-ol 

 

   NSD and NBO data for the reaction of O(3P) + 3-butyn-1-ol is shown in Figures 45-54. 

Again, only the C and O atoms are shown on the plots to keep them from being too cluttered. 

NSD and NBO plots for the first HCO dissociation pathway (Figure 39) are shown in Figures 45 

and 46, respectively. Each individual pathway for HCO/HOC radical has its own NSD and NBO 

plots. 

 

 

Figure 45. NSD Data for the HCO pathway shown in Figure 40, calculated at the M06-2x/cc-
pVTZ level of theory. 
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 As seen in Figure 45, similar trends are observed for the HCO dissociation from 3-butyn-

1-ol and from propargyl alcohol. The reaction begins with almost all of the NSD on the incoming 

triplet oxygen atom, O11, which then quickly transfers to C2 of the system after the formation of 

the adduct (IM-1T). After the dissociation step for HCO radical formation takes place, NSD is 

distributed in a similar 1:3 (O:C) ratio giving the HCO radical a total NSD of 1 (including the 

NSD of H5, not shown here). Figure 46 confirms the bond orders expected for HCO radical, with 

a C1-O11 NBO of about 2.5.  

 

 

Figure 46. NBO Data for the HCO pathway shown in Figure 40, calculated at the M06-2x/cc-
pVTZ level of theory. 
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 The NRT results of all the other O(3P) + 3-butyn-1-ol reaction pathways are presented in 

figures 47-54. Similar trends are observed in these figures as were observed in the NRT results 

for the O(3P) + propargyl alcohol, namely the 1:3 (O:C) NSD distribution ratio on the HCO 

radical product and an NSD of ~1 on the carbon atom of HOC radical products. 

 

 

Figure 47. NSD Data for the other HCO pathway shown in Figure 40, calculated at the M06-
2x/cc-pVTZ level of theory. 
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Figure 48. NBO Data for the other HCO pathway shown in Figure 40, calculated at the M06-
2x/cc-pVTZ level of theory. 

 

 

Figure 49. NSD Data for the HCO pathway shown in Figure 42, calculated at the M06-2x/cc-
pVTZ level of theory. 
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Figure 50. NBO Data for the HCO pathway shown in Figure 42, calculated at the M06-2x/cc-
pVTZ level of theory. 

 

 

Figure 51. NSD Data for the HOC pathway shown in Figure 42, calculated at the M06-2x/cc-
pVTZ level of theory. 
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Figure 52. NBO Data for the HOC pathway shown in Figure 42, calculated at the M06-2x/cc-
pVTZ level of theory. 

 

 

Figure 53. NSD Data for the HOC pathway shown in Figure 44, calculated at the M06-2x/cc-
pVTZ level of theory. 
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Figure 54. NBO Data for the HOC pathway shown in Figure 44, calculated at the M06-2x/cc-
pVTZ level of theory. 

 

 

 Following the trends observed in the propargyl alcohol reaction, the HOC formation 

pathways for O(3P) + 3-butyn-1-ol reaction reveal that nearly all of the NSD is on the C and H 

atoms of the HOC product, with almost none present on the O atom. The bond orders in HOC are 

also consistently lower than they are for HCO, with an NBO of about 2 between the C and O 

atoms in HOC and an NBO of about 2.5 between the C and O atoms in HCO. 
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Subsequent Pathways 

 The final set of results for this project revolves around the formation of additional 

HCO/HOC radical products after one dissociation of HCO/HOC radical has already occurred. Of 

the O(3P) + alkyne reactions studied to date, these “subsequent” pathways are totally unique to 

the reaction of O(3P) + 3-butyn-1-ol and may also aid in explaining the variations of HCO radical 

absorption intensity observed in the CRDLAS data. The PEPs shown here were generated by 

obtaining optimized structures at the M06-2x/cc-pVTZ level and then running single-point 

energy calculations at the CCSD(T)/cc-pVTZ level. All energies shown here are measured 

relative to the reactant; i.e., the fragment radical from which HCO/HOC radical subsequently 

dissociates. The first subsequent pathway revealed here branches off from the first PEP shown 

for O(3P) + 3-butyn-1-ol (Figure 39). After HCO dissociates, a fragment CH2CCH2OH radical is 

left over. The reaction pathway for CH2CCH2OH radical to form HOC + ethylene is shown in 

Figure 55. The next subsequent pathway branches off from the other fragment product shown in 

Figure 39. CHCHCH2OH radical may also follow a reaction pathway that results in the 

formation of HOC + ethylene, which is shown in Figure 56. The final subsequent pathway 

branches off from the product fragment in Figure 41. The CH2CH2CHO radical may follow a 

one-step reaction pathway to form HCO + ethylene, as shown in Figure 57. 
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Figure 55. Subsequent dissociation pathway for HOC, CCSD(T)//M06-2x/cc-pVTZ level. 

 

 

Figure 56. Subsequent dissociation pathway for HOC, CCSD(T)//M06-2x/cc-pVTZ level. 
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Figure 57. Subsequent dissociation pathway for HCO, CCSD(T)//M06-2x/cc-pVTZ level. 

 

 Shown in Figure 57, the subsequent dissociation of HCO radical from CH2CH2CHO is 

thermodynamically favorable as the reaction has to overcome a small relative energy barrier of 

19.67 kJ/mol and results in products that are 23.95 kJ/mol lower than the reactant. This 

subsequent pathway is predicted to be favorable as it has the fewest number of steps, lowest 

relative energy barrier, and products that are lower in energy than the fragment radical reactant. 

The subsequent dissociation pathway shown in Figure 57 may very well contribute to the strong 

HCO radical absorption signal detected for O(3P) + 3-butyn-1-ol during the CRDLAS studies 

conducted by Buettner.28 
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CHAPTER V 

CONCLUSION 

There are many consistencies worth discussing between the reactions of O(3P) + propargyl 

alcohol and O(3P) + 3-butyn-1-ol. With regards to the PEPs presented in this thesis, similar 

mechanisms are at play in both reactions involving the hydroxyl substituent. The presence of two 

oxygen atoms in these systems allows for more avenues of formyl radical production, as 

illustrated in the PEPs. The hydroxyl group has proven to take part in reaction mechanisms that 

lead to HCO and HOC radical formation for both the incoming O(3P) atom (O8 for propargyl 

alcohol and O11 for 3-butyn-1-ol) and for the hydroxyl oxygen itself (O9 for propargyl alcohol 

and O12 for 3-butyn-1-ol). Both formyl radical and isoformyl radical formation may occur via 

bond breakage at either end of the molecule because of the involvement of the hydroxyl group in 

these mechanisms.  

In addition to the unique HCO/HOC radical formation pathways for hydroxyl-substituted 

alkynes, subsequent HCO/HOC dissociations have been demonstrated for the reaction of O(3P) + 

3-butyn-1-ol. These subsequent dissociations have also been investigated for O(3P) + propargyl 

alcohol, but were never found. The first steps of a possible subsequent HCO/HOC dissociation 

pathway for O(3P) + propargyl alcohol were found, but the relative energy barrier for the 

dissociation step was too great, therefore making subsequent HCO/HOC radical formation 

unviable. 

The reaction mechanisms between O(3P) + propargyl alcohol and O(3P) + 3-butyn-1-ol are 

proven to be similar through NRT analysis. For both reactions, NSD is distributed at a 1:3 (O:C) 

ratio for HCO radical formation and accumulates almost entirely on the C atom for HOC 
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formation. In addition, the NBO between C and O for HCO radical is about 2.5, whereas the 

NBO between C and O for HOC is around 2.  

Future work on the topic of substituted alkyne combustion includes further studies into the 

subsequent dissociation pathways of HCO/HOC radical from all intermediate products formed 

after the initial dissociation in the reaction of O(3P) + 3-butyn-1-ol. In addition, a full NRT 

analysis of the subsequent dissociation pathways in the O(3P) + 3-butyn-1-ol reaction is also 

desirable to confirm the presence of an unpaired electron on the dissociated radical as well as 

bond breakage during the subsequent dissociation step. 

The computational data presented in this project may offer some insight into the variations 

observed during the CRLAS studies. First, the reaction of O(3P) + propyne showed a relatively 

low intensity for the signature of HCO radical, whereas O(3P) + propargyl alcohol showed a 

strong signal. Buettner described two pathways for HCO radical formation in the O(3P) + 

propyne reaction,28 whereas this project reveals six pathways for HCO/HOC radical formation in 

the O(3P) + propargyl alcohol reaction. The hypothesis given here may be described as a 

“statistical” explanation for the stronger HCO radical signal observed in the propargyl alcohol 

reaction. More possibilities for HCO radical formation in the propargyl alcohol reaction means 

that HCO radical is forming in higher abundance than in the propyne reaction. Second, the 

reaction of O(3P) + butyne showed a signal for HCO radical that was stronger than propyne, yet 

weaker than 3-butyn-1-ol. Buettner described two HCO radical formation pathways for the 

reaction of O(3P) + butyne, whereas this project shows six HCO/HOC radical pathways for the 

reaction of O(3P) + 3-butyn-1-ol (including the viable subsequent HCO pathway). The 

combination of more possibilities for HCO dissociation and the presence of a viable subsequent 

HCO radical formation pathway may explain the stronger HCO radical signal observed for 3-
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butyn-1-ol over butyne during the CRDLAS experiments. Building upon the work conducted by 

Buettner and Dilday has revealed new insights into the formation of HCO radical from the 

combustion of hydroxyl-substituted alkynes. 
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APPENDIX A: ALL OPTIMIZED STRUCTURES FOR O(3P) + PROPARGYL ALCOHOL 

AND O(3P) + 3-BUTYN-1-OL AT THE M06-2X/CC-PVTZ LEVEL 

 

All structures from the O(3P) + propargyl alcohol  and O(3P) + 3-butyn-1-ol reactions are 

presented here with potential energies listed in hartrees. All structures presented here were 

optimized at the M06-2x/cc-pVTZ level of theory. Energies listed here were collected via single-

point calculations at the CCSD(T)/cc-pVTZ level of theory, corrected with vibrational zero-point 

energies found at the M06-2x/cc-pVTZ level. Several species have multiple conformers listed; 

the lowest energy conformer was chosen for constructing the PEP and was kept consistent 

throughout the pathway. For example, IM-1T from the established HCO radical pathway for 

O(3P) + propargyl alcohol has 5 different conformers, with “cis-b” being the lowest in energy. 

So, isomer cis-b was chosen for IM-1T and each following species in the pathway has the “cis-b” 

conformation. Each panel in Appendix A shows a transition state in the center with reactants, 

products, or intermediates on either side to which the transition state connects. 
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M06-2x/cc-pVTZ Structures for the Triplet State Surface of O(3P) + Propargyl Alcohol 

 

 
 

IM-0T, Propargyl Alcohol + O(3P) 
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CHOHCH + HCO 
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CH2OHCH + CO 
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CHOHCH2 + CO 
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 M06-2x/cc-pVTZ Structures for the Singlet State Surface of O(3P) + Propargyl Alcohol 
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IM-2S 

 
 

 
cis a -267.0643292 

 

 
 

cis b -267.0778960 
 

 
 

trans a -267.0627604 
 
 
 

 
 

trans b -267.0676352 
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cyclic structure -266.9375599 
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IM-3S 

 
 
 

 
 

 
 

 

 
isomer a -267.0543533 

 
 
 

 
 
 

isomer b -267.0555924 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

91 
 

 
 

IM-3S 
 
 
 

 
 

 
 

 

 
isomer a -267.0543533 

 
 
 

 
 
 

isomer b -267.0555924 
 
 
 
 
 

 

 
 
 

 
TS-6S 

 
 
 
 
 
 
 

 
 

 
 

 

 
 

-266.9431655 
 
 
 
 

 

 
 
 

CHOHCH2 + CO 
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cis b -267.0778960 
 

 
 

trans a -267.0627604 
 
 
 

 
 

trans b -267.0676352 
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Cyclopropanone-2-ol 
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COHCH + H2 + CO 
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Cyclopropanone-2-ol 
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M06-2x/cc-pVTZ Structures for the Novel HCO/HOC Pathways, Triplet Surface of O(3P) + 
Propargyl Alcohol 
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cis a -266.9480623 
 

 
 

cis b -266.9453539 
 

 
 

trans a -266.9460350 
 
 

 
 

trans b -266.9460347 
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IM-7T 
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cis b -266.9453539 
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trans b -266.9460347 
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HOC + CH2CHO 
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HCO 
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TS-HCOtoHOC 
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HCO + (CH)2OH 
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IM-4T 
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TS-13T 
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IM-8T 
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HOC + CH2CHO 
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HCO + CH2COH 
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O(3P) + 3-Butyn-1-ol Structures: Triplet Surface, M06-2x/cc-pVTZ 
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HCO + CH2CCH2OH 
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HCO + CHCHCH2OH 
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CO + CHCH2CH2OH 
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CO + CH2CHCH2OH 
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TS-18T 
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HOC + CH2CHCH2O 
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CO + CH2CH2CHOH 

 
 

 
 

 

 
 

 
 

**MP2 Structure: 
-305.7722276 

 
 

 
*TS-10T splits off from IM-5T    
**M06-2x structure did not converge, and so MP2/6-311++G(d,p) was employed here.                                                                                                                             
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*MP2 Structure: 
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HCO + CH2CHCHOH 
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HOC + CH2CH2CHO 

 
 

 

 
 

*B3LYP Structure: 
-305.7724339 

 
 

 
*HOC + CH2CH2CHO structure did not converge with M06-2x and so B3LYP, another DFT method, was 
employed. 
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Subsequent Dissociation Pathway Structures: Doublet Surface, M06-2x/cc-pVTZ 
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APPENDIX B: CARTESIAN COORDINATES FOR ALL OPTIMIZED STRUCTURES FOR 

O(3P) + PROPARGYL ALCOHOL AND O(3P) + 3-BUTYN-1-OL AT THE M06-2X/CC-

PVTZ LEVEL 

M06-2x/cc-pVTZ Cartesian Coordinates for the Triplet State Surface of O(3P) + Propargyl 
Alcohol 
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M06-2x/cc-pVTZ Cartesian Coordinates for the Singlet State Surface of O(3P) + Propargyl 
Alcohol 
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M06-2x/cc-pVTZ Cartesian Coordinates for the Novel HCO/HOC Pathways, Triplet 
Surface of O(3P) + Propargyl Alcohol 
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M06-2x/cc-pVTZ Cartesian Coordinates for the Triplet State Surface of O(3P) + 

 3-Butyn-1-ol 
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M06-2x/cc-pVTZ Cartesian Coordinates for the Subsequent HCO/HOC Pathways of O(3P) 
+ 3-Butyn-1-ol 
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